【題目】已知∠EDF的頂點D在△ABC的邊AB所在直線上(不與A,B重合),DE交AC所在直線于點M,DF交BC所在直線于點N,設AM=x,BN=y,記△ADM的面積為S1,△BND的面積為S2.
(1)如圖(1),當△ABC是等邊三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2時,S1S2= ;
(2)在(1)的條件下,將點D沿AB平移,使AD=4,再將∠EDF繞點D旋轉如圖(2)所示位置,
①求y與x的函數關系式;②求S1S2的值;
(3)當△ABC是等腰三角形時,設∠B=∠A=∠EDF=α,如圖(3),當點D在BA的延長線上運動時,設的AD=a,BD=b,直接寫出S1S2的關系式(用含a、b和α的三角函數表示)
【答案】(1)12;(2)①;②12;(3)S1S2a2b2sin2α.
【解析】
(1)首先證明△ADM,△BDN都是等邊三角形,可得S1= ,由此即可解決問題.
(2)①如圖2中,首先證明△AMD∽△BDN,可得,推出,推出xy=8.②由S1=ADAMsin60°=x,S2=DBBNsin60°= y,可得S1S2=xy=xy=12.
(3)如圖3中,設AM=x,BN=y,同法可證△AMD∽△BDN,可得xy=ab,由S1=ADAMsinα=axsinα,S2=DBBNsinα=bysinα,可得S1S2=(ab)2sin2α.
(1)如圖1中,
∵△ABC是等邊三角形,
∴AB=CB=AC=6,∠A=∠B=60°.
∵DE∥BC,∠EDF=60°,
∴∠BND=∠EDF=60°,
∴∠BDN=∠ADM=60°,
∴△ADM,△BDN都是等邊三角形,
∴S122,S242=4,
∴S1S2=12.
故答案為:12.
(2)如圖2中,
①∵AM=x,BN=y,∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB.
∵∠A=∠B,
∴△AMD∽△BDN,
∴,
∴,
∴xy=8,
②∵S1ADAMsin60°x,S2DBBNsin60°y,
∴S1S2xyxy=12.
(3)如圖3中,
∵AM=x,BN=y,同法可證△AMD∽△BDN,可得xy=ab.
∵S1ADAMsinαaxsinα,S2DBBNsinαbysinα,
∴S1S2(ab)2sin2α.
科目:初中數學 來源: 題型:
【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.
(1)求從袋中隨機摸出一球,標號是1的概率;
(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數時,則甲勝;若兩次摸出的球的標號之和為奇數時,則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線,通過畫圖發(fā)現,無論b取何值,拋物線總會經過兩個定點;
(1)直接寫出這兩個定點的坐標________ ,_________;
(2)若將此拋物線向右平移單位,再向上平移(b>0)個單位,平移后的拋物線頂點都在某個函數的圖象上,求這個新函數的解析式(不必寫自變量取值范圍);
(3)若拋物線與直線y=x–3有兩個交點A與B,且,求b的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D是BC邊上異于點B,C的一動點,將三角形ABD沿AB翻折得到△ABD1,將△ACD沿AC翻折得到△ACD2,連接D1D2,則四邊形D1BCD2的面積的最大值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABC1D1邊長為1,延長C1D1到A1,以A1C1為邊向右作正方形A1C1C2D2,延長C2D2到A2,以A2C2為邊向右作正方形A2C2C3D3(如圖),以比類推……若A1C1=2,且點A、D2,D3,……Dn在同一直線上,則正方形An﹣1Cn﹣1CnDn的邊長是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于D、E,且BD=2AD
(1)求k的值和點E的坐標;
(2)點P是線段OC上的一個動點,是否存在點P,使∠APE=90°?若存在,求出此時點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD的外側, 作兩個等腰三角形ADE和DCF,
(1) 若EA=ED=FD=FC,請判斷BE和AF的關系?并給予證明.
(2)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,請用備用圖畫出圖形,直接寫出BE和AF的關系,不用證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班“數學興趣小組”對函數y=x2﹣2|x|的圖象和性質進行了探究,探究過程如下,請補充完整.(1)自變量x的取值范圍是全體實數,x與y的幾組對應值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據表中數據,在如圖所示的平面直角坐標系中描點,并畫出了函數圖象的一部分,請畫出該函數圖象的另一部分.
(3)觀察函數圖象,寫出兩條函數的性質.
(4)進一步探究函數圖象發(fā)現:
①函數圖象與x軸有 個交點,所以對應的方程x2﹣2|x|=0有 個實數根;
②方程x2﹣2|x|=2有 個實數根.
③關于x的方程x2﹣2|x|=a有4個實數根時,a的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com