精英家教網(wǎng)如圖,正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點A(m,2),一次函數(shù)圖象經(jīng)過點B(-2,-1),與y軸的交點為C,與x軸的交點為D.
(1)求一次函數(shù)解析式;
(2)求C點的坐標(biāo);
(3)求△AOD的面積.
分析:(1)首先根據(jù)正比例函數(shù)解析式求得m的值,再進一步運用待定系數(shù)法求得一次函數(shù)的解析式;
(2)根據(jù)(1)中的解析式,令x=0求得點C的坐標(biāo);
(3)根據(jù)(1)中的解析式,令y=0求得點D的坐標(biāo),從而求得三角形的面積.
解答:解:(1)∵正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點A(m,2),
∴2m=2,
m=1.
把(1,2)和(-2,-1)代入y=kx+b,得
k+b=2
-2k+b=-1

解,得
k=1
b=1
,
則一次函數(shù)解析式是y=x+1;

(2)令x=0,則y=1,即點C(0,1);

(3)令y=0,則x=-1.
則△AOD的面積=
1
2
×1×2=1.
點評:此題綜合考查了待定系數(shù)法求函數(shù)解析式、直線與坐標(biāo)軸的交點的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y=
1
2
x
的圖象與反比例函數(shù)y=
k
x
(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)在第一象限圖象上的點,且B點的橫坐標(biāo)為1,在x軸上求一點P,使PA+PB最。ㄖ恍柙趫D中作出點B,P,保留痕跡,不必寫出理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=
1
x
的圖象相交于A、C兩點,過A作x軸的垂線,交x軸于點B,連接BC.若△ABC的面積為S,則(  )
A、S=1B、S=2
C、S=3D、S的值不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=
5x
的圖象相交于A、C兩點,過A作x軸的垂線交x軸于B,連接BC,則△ABC的面積S=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正比例函數(shù)y=
1
2
x的圖象與反比例函數(shù)y=
k
x
(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△AOM的面積為1,點B(-1,t)為反比例函數(shù)在第三象限圖象上的點.
(1)求反比例函數(shù)的解析式;
(2)試求出點A、點B的坐標(biāo);
(3)在y軸上求一點P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=
k2x
的圖象相交于點A、B,點A 在第一象限,且點A 的橫坐標(biāo)為1,作AH垂直于x軸,垂足為點H,S△AOH=1.
(1)求AH的長;
(2)求這兩個函數(shù)的解析式;
(3)如果△OAC是以O(shè)A為腰的等腰三角形,且點C在x軸上,求點C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案