已知拋物線y=ax2-2ax-3a(a<0).
(1)求證:拋物線y=ax2-2ax-3a(a<0)一定與x軸有兩個不同的交點;
(2)設(1)中的拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,點D為拋物線的頂點.
①求點A、B的坐標;
②過點D作DH⊥y軸于點H,若DH=HC,求a的值和直線CD的解析式.

(1)證明:令ax2-2ax-3a=0.
∵a<0,
∴△=(-2a)2-4a•(-3a)=16a2>0,
∴拋物線y=ax2-2ax-3a(a<0)一定與x軸有兩個不同的交點;

(2)解:①令y=0,得 ax2-2ax-3a=0.
∵a≠0,
∴x2-2x-3=0,
解得:x1=-1,x2=3.
∵點A在點B的左側∴點A的坐標(-1,0),點B的坐標(3,0)
②由y=ax2-2ax-3a,令x=0,得y=-3a.
∴C(0,-3a).
又∵y=ax2-2ax-3a=a(x-1)2-4a,
∴D(1,-4a),
∴DH=HC=-4a-(-3a)=-a=1,
∴a=-1,
∴C(0,3),D(1,4),
設直線CD的解析式為y=kx+b,
把點C,點D的坐標分別代入得:,
解得
故直線CD的解析式為:y=x+3.
分析:(1)令令ax2-2ax-3a=0,證明出△>0即可說明拋物線y=ax2-2ax-3a(a<0)一定與x軸有兩個不同的交點;
(2)①令y=0,得 ax2-2ax-3a=0,根據(jù)a≠0,解出一元二次方程,即可得到點A、B的坐標;
②由y=ax2-2ax-3a,令x=0,得y=-3a,求出C點坐標(0,-3a),同理求出D點坐標為(1,-4a),進而證明出DH=HC=-a=1,求出a的值,設直線CD的解析式為y=kx+b,列出k和b的方程組求出k和b,直線CD的解析式即可求出.
點評:本題主要考查二次函數(shù)的綜合題的知識點,解答本題的關鍵是掌握二次函數(shù)圖象得性質和待定系數(shù)法求一次函數(shù)的解析式,此題難度不大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

同步練習冊答案