如圖,在菱形ABCD中,AB=5,對角線AC=6.若過點(diǎn)A作AE⊥BC,垂足為E,則AE的長為( )
A. 4 B. C. D. 5
C考點(diǎn): 菱形的性質(zhì).
專題: 幾何圖形問題.
分析: 連接BD,根據(jù)菱形的性質(zhì)可得AC⊥BD,AO=AC,然后根據(jù)勾股定理計(jì)算出BO長,再算出菱形的面積,然后再根據(jù)面積公式BC•AE=AC•BD可得答案.
解答: 解:連接BD,交AC于O點(diǎn),
∵四邊形ABCD是菱形,
∴AB=BC=CD=AD=5,
∴AC⊥BD,AO=AC,BD=2BO,
∴∠AOB=90°,
∵AC=6,
∴AO=3,
∴B0==4,
∴DB=8,
∴菱形ABCD的面積是×AC•DB=×6×8=24,
∴BC•AE=24,
AE=,
故選:C.
點(diǎn)評: 此題主要考查了菱形的性質(zhì),以及菱形的性質(zhì)面積,關(guān)鍵是掌握菱形的對角線互相垂直且平分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在BC、CD上,且BE=CF.連接BF與DE相交于點(diǎn)G,連接AG與BD相交于點(diǎn)H.下列結(jié)論:①△BED≌△CFB;②若DF=2CF,則DG=4GE;③S四邊形ABGD=AG2.其中正確的結(jié)論( 。
A.只有②③ B.只有①③ C.只有①② D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
直尺與三角尺按如圖所示的方式疊放在一起,在圖中所標(biāo)記的角中,與∠1互余的角有幾個(gè)( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,連接DE交AC于點(diǎn)F.
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.
(3)在(2)的條件下,若AB=AC=2,求正方形ADCE周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.如圖,在電線桿上的E處引拉線EC和EB固定電線桿,在離電線桿6米的A處安置測角儀(點(diǎn)A,C,F(xiàn)在一直線上),在D處測得電線桿上E處的仰角為37°,已知測角儀的高AD為1.5米,AC為3米,求拉線EC的長.(精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列去括號正確的是( 。
A. 3x﹣(2x﹣1)=3x﹣2x﹣1 B. ﹣4(x+1)+5=﹣4x+4+5
C. 2x+7(x﹣1)=2x+7x﹣1 D. 2﹣[3x﹣5(x+1)]=2﹣3x+5x+5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com