如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)精英家教網(wǎng).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過點(diǎn)F且與y軸平行.直線y=-x+m過點(diǎn)C,交y軸于D點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)K為線段AB上一動點(diǎn),過點(diǎn)K作x軸的垂線與直線CD交于點(diǎn)H,與拋物線交于點(diǎn)G,求線段HG長度的最大值;
(3)在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).
分析:(1)把點(diǎn)E,A、B的坐標(biāo)代入函數(shù)表達(dá)式,即可求出a、b、c的值;
(2)根據(jù)C點(diǎn)的坐標(biāo)求出直線CD的解析式,然后結(jié)合圖形設(shè)出K點(diǎn)的坐標(biāo)(t,0),表達(dá)出H點(diǎn)和G點(diǎn)的坐標(biāo),列出HG關(guān)于t的表達(dá)式,根據(jù)二次函數(shù)的性質(zhì)求出最大值;
(3)需要討論解決,①若線段AC是以點(diǎn)A、C,M、N為頂點(diǎn)的平行四邊形的邊,當(dāng)點(diǎn)N在點(diǎn)M的左側(cè)時,MN=3-n;當(dāng)點(diǎn)N在點(diǎn)M的右側(cè)時,MN=n-3,然后根據(jù)已知條件在求n的坐標(biāo)就容易了
②若線段AC是以點(diǎn)A、C,M、N為頂點(diǎn)的平行四邊形的對角線時,由“點(diǎn)C與點(diǎn)A關(guān)于點(diǎn)B中心對稱”知:點(diǎn)M與點(diǎn)N關(guān)于點(diǎn)B中心對稱,取點(diǎn)F關(guān)于點(diǎn)B的對稱點(diǎn)P,則P點(diǎn)坐標(biāo)為(-1,0),過P點(diǎn)作NP⊥x軸,交拋物線于點(diǎn)N,結(jié)合已知條件再求n的坐標(biāo)就容易了.
解答:精英家教網(wǎng)解:(1)設(shè)拋物線的函數(shù)表達(dá)式為y=a(x-1)(x+3)
∵拋物線交y軸于點(diǎn)E(0,-3),將該點(diǎn)坐標(biāo)代入上式,得a=1
∴所求函數(shù)表達(dá)式為y=(x-1)(x+3),
即y=x2+2x-3;

(2)∵點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn),點(diǎn)A坐標(biāo)(-3,0),點(diǎn)B坐標(biāo)(1,0),
∴點(diǎn)C坐標(biāo)(5,0),
∴將點(diǎn)C坐標(biāo)代入y=-x+m,得m=5,
∴直線CD的函數(shù)表達(dá)式為y=-x+5,
設(shè)K點(diǎn)的坐標(biāo)為(t,0),則H點(diǎn)的坐標(biāo)為(t,-t+5),G點(diǎn)的坐標(biāo)為(t,t2+2t-3),
∵點(diǎn)K為線段AB上一動點(diǎn),
∴-3≤t≤1,
∴HG=(-t+5)-(t2+2t-3)=-t2-3t+8=-(t+
3
2
2+
41
4

∵-3<-
3
2
<1,
∴當(dāng)t=-
3
2
時,線段HG的長度有最大值
41
4
;

(3)∵點(diǎn)F是線段BC的中點(diǎn),點(diǎn)B(1,0),點(diǎn)C(5,0),
∴點(diǎn)F的坐標(biāo)為(3,0),
∵直線l過點(diǎn)F且與y軸平行,
∴直線l的函數(shù)表達(dá)式為x=3,
∵點(diǎn)M在直線l上,點(diǎn)N在拋物線上,
∴設(shè)點(diǎn)M的坐標(biāo)為(3,m),點(diǎn)N的坐標(biāo)為(n,n2+2n-3),
∵點(diǎn)A(-3,0),點(diǎn)C(5,0),
∴AC=8,
分情況討論:
①若線段AC是以點(diǎn)A、C,M、N為頂點(diǎn)的平行四邊形的邊,則需MN∥AC,且MN=AC=8.
當(dāng)點(diǎn)N在點(diǎn)M的左側(cè)時,MN=3-n,
∴3-n=8,解得n=-5,
∴N點(diǎn)的坐標(biāo)為(-5,12),
當(dāng)點(diǎn)N在點(diǎn)M的右側(cè)時,MN=n-3,
∴n-3=8,
解得n=11,
∴N點(diǎn)的坐標(biāo)為(11,140),
②若線段AC是以點(diǎn)A、C,M、N為頂點(diǎn)的平行四邊形的對角線,由“點(diǎn)C與點(diǎn)A關(guān)于點(diǎn)B中心對稱”知:點(diǎn)M與點(diǎn)N關(guān)于點(diǎn)B中心對稱,取點(diǎn)F關(guān)于點(diǎn)B的對稱點(diǎn)P,則P點(diǎn)坐標(biāo)為(-1,0)
過P點(diǎn)作NP⊥x軸,交拋物線于點(diǎn)N,
將x=-1代入y=x2+2x-3,得y=-4,
過點(diǎn)N作直線NM交直線l于點(diǎn)M,
在△BPN和△BFM中,
∠NBP=∠MBF,
BF=BP,
∠BPN=∠BFM=90°,
∴△BPN≌△BFM,
∴NB=MB,
∴四邊形ANCM為平行四邊形,
∴坐標(biāo)(-1,-4)的點(diǎn)N符合條件,
∴當(dāng)N的坐標(biāo)為(-5,12),(11,140),(-1,-4)時,以點(diǎn)A、C、M、N為頂點(diǎn)的四邊形為平行四邊形.
點(diǎn)評:本題主要考查了待定系數(shù)法求二次函數(shù)解析式函數(shù)圖象交點(diǎn)的求法等知識點(diǎn)、平行四邊形的判定和性質(zhì)等知識點(diǎn),主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時,求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點(diǎn),N是線段OC上一動點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時,求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案