【題目】如圖,已知,AO、B在同一條直線上,∠AOE=COD,∠EOD=30°

1)若∠AOE=88°30′,求∠BOC的度數(shù);

2)若射線OC平分∠EOB,求∠BOC的度數(shù).

【答案】(1) 33°;(2) BOC=50°

【解析】

(1)先求出∠AOC度數(shù),再利用∠AOC與∠BOC互補(bǔ)關(guān)系求解;

(2)由∠AOE=COD,易得∠AOD=COE,再借助角平分線定義分析出∠AOD=COE=BOC,根據(jù)這三個(gè)等角加上∠DOE等于180°列方程,從而可求出∠BOC度數(shù).

(1)∵∠AOC=AOE+DOC-DOE =88°30′+88°30′-30°=147°,

∴∠BOC=180°-AOC =180°-147°=33°;

(2)∵∠AOE=COD

∴∠AOE-DOE=COD-DOE,

即∠AOD=COE

OC平分∠BOE,

∴∠BOC=COE,

∴∠BOC=COE=AOD,

設(shè)∠BOC=COE=AOD=x°

3x+30°=180°,解得x=50°,

所以∠BOC=50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)OOMAB

1)∠AOC的鄰補(bǔ)角為    (寫出一個(gè)即可);

2)若∠1=∠2,判斷ONCD的位置關(guān)系,并說明理由;

3)若∠1=BOC,求∠MOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對(duì)不同口味牛奶的喜好,對(duì)全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:

(1)本次被調(diào)查的學(xué)生有名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察一列數(shù):12,4,8,16我們發(fā)現(xiàn),這一列數(shù)從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于2.一般地,如果一列數(shù)從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于同一個(gè)常數(shù),這一列數(shù)就叫做等比數(shù)列,這個(gè)常數(shù)就叫做等比數(shù)列的公比.

(1)等比數(shù)列3,-1248,的第4項(xiàng)是______

(2)如果一列數(shù)a1,a2,a3,a4,是等比數(shù)列,且公比為q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3,則a5=_______an=______(a1q的式子表示);

(3)一個(gè)等比數(shù)列的第2項(xiàng)是9,第4項(xiàng)是36,求它的公比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長AE交BC的延長線于點(diǎn)F.

(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,奧運(yùn)福娃在5×5的方格(每個(gè)格邊長尾1m)上沿著網(wǎng)格線運(yùn)動(dòng).貝貝從A處出發(fā)去尋找B、C、D處的其它福娃,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從AB記為:A→B(+1,+4),從BA記為:

B→A(﹣4,﹣1).請(qǐng)根據(jù)圖中所給信息解決下列問題:

(1)A→C______,_____);

B→C___________);C→_____(﹣4,﹣3);

(2)如果貝貝的行走路線為A→B→C→D,請(qǐng)計(jì)算貝貝走過的路程;

(3)如果貝貝從A處去尋找妮妮的行走路線依次為(+2,+2),

+2,﹣1),(﹣2,+3),(﹣1,﹣1),請(qǐng)?jiān)趫D中標(biāo)出妮妮的位置E點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OBOC、AC的中點(diǎn)DEF、G依次連結(jié),得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若MEF的中點(diǎn),OM=3∠OBC∠OCB互余,求DG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.AOC=COB,則∠BOF=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形ABD中,∠A=90°,AB=AD=2,作△ABD關(guān)于直線BD對(duì)稱的△CBD,已知點(diǎn)F為線段AB上一點(diǎn),且AF=m,連接CF,作∠FCE=90°,CE交AD的延長線于點(diǎn)E.

(1)求證:△BCF≌△DCE;

(2)若AE=n,且mn=3,求m2+n2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案