數(shù)軸上表示-數(shù)學公式的點到原點的距離是


  1. A.
    -數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    -3
  4. D.
    3
B
分析:根據(jù)絕對值的幾何意義,本題即求|-|,再由絕對值的代數(shù)意義,一個負數(shù)的絕對值是它的相反數(shù),即可得出結(jié)果.
解答:數(shù)軸上表示-的點到原點的距離是|-|=
故選B.
點評:此題考查了絕對值的意義:|a|是數(shù)軸上表示數(shù)a的點到原點的距離;一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

28、閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;
這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應點之間的距離;
在解題中,我們會常常運用絕對值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊.若x對應點在1的右邊,如圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為
1或-7
;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若關于x的方程2x+a=4的解在數(shù)軸上表示的點到原距離為3,則a的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離,即|x|=|x-0|,也就是說|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;這個結(jié)論可以推廣為:|x-y|表示在數(shù)軸上數(shù)x、y對應點之間的距離;在解題中,我們常常運用絕對值的幾何意義.
①解方程|x|=2,容易看出,在數(shù)軸上與原點距離為2的點對應的數(shù)為±2,即該方程的解為x=±2.
②在方程|x-1|=2中,x的值就是數(shù)軸上到1的距離為2的點對應的數(shù),顯然x=3或x=-1.
③在方程|x-1|+|x+2|=5中,顯然該方程表示數(shù)軸上與1和-2的距離之和為5 的點對應的x值,在數(shù)軸上1和-2的距離為3,滿足方程的x的對應點在1的右邊或-2的左邊.若x的對應點在1的右邊,由圖示可知,x=2;同理,若x的對應點在-2的左邊,可得x=-3,所以原方程的解是x=2或x=-3.根據(jù)上面的閱讀材料,解答下列問題:
(1)方程|x|=5的解是
x=±5
x=±5

(2)方程|x-2|=3的解是
x=5或-1
x=5或-1

(3)畫出圖示,解方程|x-3|+|x+2|=9.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;

這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應點之間的距離;
在解題中,我們會常常運用絕對值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊.若x對應點在1的右邊,如圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為______;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年安徽省滁州市鳳陽縣城西中學中考數(shù)學模擬試卷(解析版) 題型:解答題

閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;

這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應點之間的距離;
在解題中,我們會常常運用絕對值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊.若x對應點在1的右邊,如圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為______;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案