【題目】如圖,點的坐標為,動點從點出發(fā),沿軸以每秒個單位的速度向上移動,且過點的直線也隨之移動,如果點關(guān)于的對稱點落在坐標軸上,沒點的移動時間為,那么的值可以是___.
【答案】2或3(答一個即可)
【解析】
找出點M關(guān)于直線l在坐標軸上的對稱點E、F,如圖所示.求出點E、F的坐標,然后分別求出ME、MF中點坐標,最后分別求出時間t的值.
如圖,過點M作MF⊥直線l,交y軸于點F,交x軸于點E,則點E.F為點M在坐標軸上的對稱點.
過點M作MD⊥x軸于點D,則OD=3,MD=2.
由直線l:y=x+b可知∠PDO=∠OPD=45°,
∴∠MED=∠OEF=45°,則△MDE與△OEF均為等腰直角三角形,
∴DE=MD=2,OE=OF=1,
∴E(1,0),F(0,1).
∵M(3,2),F(0,1),
∴線段MF中點坐標為(,).
直線y=x+b過點(,),則=+b,解得:b=2,
∴t=2.
∵M(3,2),E(1,0),
∴線段ME中點坐標為(2,1).
直線y=x+b過點(2,1),則1=2+b,解得:b=3,
∴t=3.
故點M關(guān)于l的對稱點,當(dāng)t=2時,落在y軸上,當(dāng)t=3時,落在x軸上,
故答案為2或3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校實施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖1,2).請根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計圖補充完整;
(3)為了共同進步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,AB=,,∠B=45°,點D在邊BC上,聯(lián)結(jié)AD, 以點A為圓心,AD為半徑畫圓,與邊AC交于點E,點F在圓A上,且AF⊥AD.
(1)設(shè)BD為x,點D、F之間的距離為y,求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(2)如果E是的中點,求的值;
(3)聯(lián)結(jié)CF,如果四邊形ADCF是梯形,求BD的長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“美麗紹興鄉(xiāng)土風(fēng)情知識”大賽預(yù)賽各參賽選手的成績?nèi)缦拢?/span>
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99.
通過整理,得到數(shù)據(jù)分析表如下:
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1)班 | 100 | m | 93 | 93 | 12 |
八(2)班 | 99 | 95 | n | 93 | 8.4 |
(1)求表中m、n的值;
(2)依據(jù)數(shù)據(jù)分析表,有同學(xué)說:“最高分在(1)班,(1)班的成績比(2)班好”,但也有同學(xué)說(2)班的成績更好請您寫出兩條支持八(2)班成績好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某乒乓球館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價600元/張,每次憑卡不再收費;②銀卡售價150元/張,每次憑卡另收10元;暑期普通票正常出售,兩種優(yōu)惠卡僅限暑期使用,不限次數(shù).設(shè)打乒乓x次時,所需總費用為y元.
(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數(shù)關(guān)系式;
(2)在同一個坐標系中,若三種消費方式對應(yīng)的函數(shù)圖像如圖所示,請根據(jù)函數(shù)圖像,寫出選擇哪種消費方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知:是圓的直徑,,點為圓上異于點、的一點,點為弦的中點.
(1)如果交于點,求:的值;
(2)如果于點,求的正弦值;
(3)如果,為上一動點,過作,交于點,與射線交于圓內(nèi)點,請完成下列探究.
探究一:設(shè),,求關(guān)于的函數(shù)解析式及其定義域.
探究二:如果點在以為圓心,為半徑的圓上,寫出此時的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點是上一點,與過點的切線垂直,垂足為點,直線與的延長線相交于點,平分,交于點.
求證:平分;
求證:是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市長途客運站每天6:30—7:30開往某縣的三輛班車票價相同,但車的舒適程度不同.小張和小王因事需在這一時段乘車去該縣,但不知道三輛車開來的順序,兩人采用不同的乘車方案:小張無論如何決定乘坐開來的第一輛車,而小王則是先觀察后上車,當(dāng)?shù)谝惠v車開來時,他不上車,而是仔細觀察車的舒適狀況.若第二輛車的狀況比第一輛車好,他就上第二輛車;若第二輛車不如第一輛車,他就上第三輛車.若按這三輛車的舒適程度分為優(yōu)、中、差三等,請你思考并回答下列問題:
(1)三輛車按出現(xiàn)的先后順序共有哪幾種可能?
(2)請列表分析哪種方案乘坐優(yōu)等車的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(8,0),O為坐標原點,P是線段OA上任意一點(不含端點O、A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當(dāng)OD=AD=5時,這兩個二次函數(shù)的最大值之和等于_______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com