【題目】如圖,AB為O的直徑,弦CFAB于點(diǎn)E,CF=4,過點(diǎn)C作O的切線交AB的延長線于點(diǎn)D,D=30°,則OA的長為(  )

A. 2 B. 4 C. 4 D. 4

【答案】B

【解析】

由∠D=30°,利用切線的性質(zhì)可得∠COB的度數(shù),利用等邊三角形的判定和性質(zhì)及切線的性質(zhì)可得∠BCD,易得BC=BD,由垂徑定理得CE的長,在直角三角形COE中,利用銳角三角函數(shù)易得OC的長,得BD的長.

解:連結(jié)CO,BC,

∵CD切⊙OC,

∴∠OCD=90°,

又∵∠D=30°,

∴∠COB=60°,

∴△OBC是等邊三角形,即BC=OC=OB,

∴∠BCD=90°﹣∠OCB=30°,

∴BC=DB,

又∵直徑AB⊥弦CF,

∴直徑AB平分弦CF,即CE=

Rt△OCE中,sin∠COE==,

∴OC==4,

∴OA=OC=4.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都市空氣質(zhì)量整治領(lǐng)導(dǎo)小組近期提出保護(hù)好環(huán)境,拒絕冒黑煙.某公交公司將淘汰某一條線路上冒黑煙較嚴(yán)重的公交車,計(jì)劃購買型和型兩種環(huán)保節(jié)能的公交車10輛.若購買型公交車1輛,型公交車2輛,共需400萬元;若購買型公交車2輛,型公交車1輛,共需350萬元.

1)求購買型和型公交車每輛各需多少萬元?

2)預(yù)計(jì)在該線路上型和型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買型和型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)(21)和(0,﹣2).

1)求出該函數(shù)圖象與x軸的交點(diǎn)坐標(biāo);

2)判斷點(diǎn)(﹣4,6)是否在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知,,是線段上的一個(gè)動(dòng)點(diǎn),作直線,過點(diǎn)軸于點(diǎn),若,設(shè)點(diǎn)、在直線上,則為(

A.2B.C.3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=4.

(1)求拋物線的函數(shù)表達(dá)式.

(2)當(dāng)t為何值時(shí),矩形ABCD的周長有最大值?最大值是多少?

(3)保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以坐標(biāo)原點(diǎn)O為圓心,作半徑為3的圓,若直線y=xb與⊙O相交,則b的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABC外接圓上的點(diǎn),且B,D位于AC的兩側(cè),DEAB,垂足為EDE的延長線交此圓于點(diǎn)FBGAD,垂足為G,BGDE于點(diǎn)H,DC,FB的延長線交于點(diǎn)P,且PC=PB

(1)求證:∠BAD=PCB

(2)求證:BGCD

(3)設(shè)ABC外接圓的圓心為O,若AB=DHCOD=23°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,切點(diǎn)為B,OA交⊙O于點(diǎn)C,且AC=OC.

(1)求弧BC的度數(shù);

(2)設(shè)⊙O的半徑為5,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)班同學(xué)小明和小亮,升入九年級(jí)時(shí)學(xué)校采用隨機(jī)的方式編班,已知九年級(jí)共分六個(gè)班,小明和小亮被分在同一個(gè)班的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案