精英家教網(wǎng)如圖,矩形OABC的頂點0、B的坐標(biāo)分別是O(0,0)、B(8,4),頂點A在x軸上,頂點C在y軸上,把△OAB沿OB翻折,使點A落在點D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長度;
③求直線BD的解析.
分析:①根據(jù)矩形的性質(zhì)和軸對稱的性質(zhì),可得∠OBC=∠BOE=∠OBE,即可證得;
②可設(shè)OE=x,則AE=DE=8-x,則在直角△EAB中,根據(jù)勾股定理,可求出x,即可解答出;
③如圖,作DF⊥OE,根據(jù)直角三角形的面積,可求出DF,再根據(jù)勾股定理,可求出OF,即可得出點D的坐標(biāo),用待定系數(shù)法,即可求得直線BD的解析式.
解答:精英家教網(wǎng)①證明:在矩形OABC中,∠OBC=∠BOE,
∵△OCB≌△ODB,
∴∠CBO=∠DBO,
∴∠BOE=∠OBE,
∴OE=EB;

②解:由①可得,BD=BC=OA=8,
∴AE=DE,
設(shè)OE=BE=x,則AE=DE=8-x,
∴在直角△EAB中,(8-x)2+42=x2,
解得,x=5,則8-x=8-5=3,
∴OE=5,DE=3;

③解:如圖,作DF⊥OE,垂足為F
∴在直角△ODE中,OD=4,
∴DF=
3×4
5
=
12
5
,
∴OF=
OD2-DF2
=
42-(
12
5
)
2
=
16
5

∴點D的坐標(biāo)為(
16
5
,-
12
5
),
設(shè)直線BD的解析式為y=kx+b,
4=8k+b
-
12
5
=
16
5
k+b
,
解得,
k=
4
3
b=-
20
3
,
∴直線BD的解析式為:y=
4
3
x-
20
3
點評:本題主要考查了矩形的性質(zhì)、軸對稱圖形的性質(zhì)、勾股定理和一次函數(shù)解析式的求法,本題涉及的知識點比較多,考查了學(xué)生對于知識的綜合運用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC的邊OA、OC在坐標(biāo)軸上,經(jīng)過點B的雙曲線的解析式為y=
k
x
(x
<0),M為OC上一點,且CM=2OM,N為BC的中點,BM與AN交于點E,若四邊形EMCN的面積為
13
4
,則k=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點D,與x軸相交于另外一點E,若點M是x軸上的點,N是y軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樊城區(qū)模擬)已知如圖,矩形OABC的長OA=2
3
,寬OC=2,將△AOC沿AC翻折得△AFC.
(1)求點F的坐標(biāo);
(2)求過A、F、C三點的拋物線解析式;
(3)在拋物線上是否存在一點P,使得△ACP為以A為直角頂點的直角三角形?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點坐標(biāo)分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內(nèi)部任取一點(x,y),則x<y的概率是
 

查看答案和解析>>

同步練習(xí)冊答案