【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當(dāng)這兩點中有一點到達自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.

(1)如果點Q的速度為每秒2個單位,①試分別寫出這時點Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);

②求t為何值時,PQ∥OC?

(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;

②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

【答案】(1)點Q在OC上時Q(t,t)點Q在CB上時Q(2t﹣1,3);t=5;(2)v=,點Q所經(jīng)過的路程為(16﹣t);直線PQ不可能同時把梯形OABC的面積也分成相等的兩部分.

【解析】

試題分析:(1)①根據(jù)相似三角形的性質(zhì)即可求得點Q在OC上時的坐標(biāo);根據(jù)路程即可求得點Q在CB上時的橫坐標(biāo)是(2t﹣5),縱坐標(biāo)和點C的縱坐標(biāo)一致,是3;

②顯然此時Q在CB上,由平行四邊形的知識可得,只需根據(jù)OP=CQ列方程求解;

(2)①設(shè)Q的速度為v,根據(jù)P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,即可建立函數(shù)關(guān)系式;

②顯然Q應(yīng)在CB上,根據(jù)面積和①中的結(jié)論得到關(guān)于t的方程,進行求解.

試題解析:(1)①點Q在OC上時Q(t,t),點Q在CB上時Q(2t﹣1,3).

②顯然Q在CB上,由平行四邊形的知識可得,只須OP=CQ所以2t﹣5=t得t=5.

(2)①設(shè)Q的速度為v,先求梯形的周長為32,可得t+vt=16,所以v=,點Q所經(jīng)過的路程為(16﹣t);

當(dāng)Q在OC上時,做QM⊥OA,垂足為M,則QM=(16﹣t)×,∴S△OPQ=×(16﹣t)t=t(16﹣t)=S梯形OABC,則令t(16﹣t)=18,解得t1=10,t2=6,當(dāng)t1=10時,16﹣x=6,此時點Q不在OC上,舍去;當(dāng)t2=6時,16﹣x=10,此時點Q也不在OC上,舍去;∴當(dāng)Q點在OC上時,PQ不可能同時把梯形OABC的面積也分成相等的兩部分.

當(dāng)Q點在CB上時,CQ=16﹣t﹣5=11﹣x,∴S梯形OPQC=×(11﹣x+x)×3=≠18,∴當(dāng)Q點在CB上時,PQ不可能同時把梯形OABC的面積也分成相等的兩部分.

綜上所述,直線PQ不可能同時把梯形OABC的面積也分成相等的兩部分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)求證:AD和CE垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、B、C在同一直線上,△ABD和△BCE都是等邊三角形.則在下列結(jié)論中:①AP=DQ,②EP=EC,③PQ=PB,④∠AOB=∠BOC=∠COE.正確的結(jié)論是(填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y2被拋物線yx23x+2截得的線段長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用直尺和圓規(guī)作一個角等于已知角,如圖,能得出∠A′O′B′=∠AOB的依據(jù)是(
A.(SAS)
B.(SSS)
C.(ASA)
D.(AAS)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是(
A.0不是正數(shù)也不是負(fù)數(shù)
B.負(fù)數(shù)是帶“—”的數(shù),正數(shù)是帶有“+”的數(shù)
C.非負(fù)數(shù)是正數(shù)或0
D.0是一個特殊的整數(shù),它并不只是表示“沒有”

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形(提示:正方形四邊相等,四個角都是90°)
(1)如圖1,若點G是線段CD邊上任意一點(不與點C、D重合),連接AG,作BF⊥AG于點F,DE⊥AG于點E,求證:△ABF≌△DAE.

(2)如圖2,若點G是線段CD延長線上任意一點,連接AG,作BF⊥AG于點F,DE⊥AG于點E,判斷線段EF與AF、BF的數(shù)量關(guān)系,并證明.

(3)若點G是直線BC上任意一點(不與點B、C重合),連接AG,作BF⊥AG于點F,DE⊥AG于點E,探究線段EF與AF、BF的數(shù)量關(guān)系.(請畫圖、不用證明、直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a一定表示( )
A.正數(shù)
B.負(fù)數(shù)
C.不是正數(shù)就是負(fù)數(shù)
D.以上答案均不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以點(21)為圓心,1為半徑的圓必定(  )

A.x軸相切、與y軸相離B.x軸、y軸都相離

C.x軸相離、與y軸相切D.x軸、y軸都相切

查看答案和解析>>

同步練習(xí)冊答案