【題目】如圖,點A是反比例函數(shù)在第二象限內(nèi)圖象上一點,點B是反比例函數(shù)在第一象限內(nèi)圖象上一點,直線ABy軸交于點C,且AC=BC,連接OA、OB,則AOB的面積是( 。

A. 2 B. 2.5 C. 3 D. 3.5

【答案】C

【解析】

分別過A、B兩點作x軸的垂線,構(gòu)成直角梯形,根據(jù)AC=BC,判斷OC為直角梯形的中位線,得出OD=OE=a,根據(jù)雙曲線解析式確定A、B兩點的坐標及AD、BE的長,根據(jù)SAOB=S梯形ADBE-SAOD-SBOE求解.

分別過A、B兩點作ADx軸,BEx軸,垂足為D、E,

AC=CB,

OD=OE,

設(shè)A(-a,),則B(a,),

SAOB=S梯形ADBE-SAOD-SBOE=+)×2a--=3.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】C、D在線段AB上,若點C是線段AD的中點,2BD>AD,則下列結(jié)論正確的是( ).

A. CD<AD- BD B. AB>2BD C. BD>AD D. BC>AD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的邊長AD=6,AB=4,EAB的中點,F在邊BC上,且BF=2FCAF分別與DE、DB相交于點M,N,則MN的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑CD垂直于弦AB,垂足為EFDC延長線上一點,且∠CBF=∠CDB

1)求證:FB⊙O的切線;

2)若AB=8,CE=2,求sin∠F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)軸于點,交軸于點,且與反比例函數(shù)的圖象交于,兩點.

(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;

(2)過點軸于點,過點軸于點,求四邊形的面積;

(3)當時,的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】品中華詩詞,尋文化基因.某校舉辦了第二屆中華詩詞大賽,將該校八年級參加競賽的學生成績統(tǒng)計后,繪制了如下不完整的頻數(shù)分布統(tǒng)計表與頻數(shù)分布直方圖.

頻數(shù)分布統(tǒng)計表

組別

成績x(分)

人數(shù)

百分比

A

60≤x<70

8

20%

B

70≤x<80

16

m%

C

80≤x<90

a

30%

D

90≤<x≤100

4

10%

請觀察圖表,解答下列問題:

(1)表中a=   ,m=   ;

(2)補全頻數(shù)分布直方圖;

(3)D組的4名學生中,有1名男生和3名女生.現(xiàn)從中隨機抽取2名學生參加市級競賽,則抽取的2名學生恰好是一名男生和一名女生的概率為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)的圖象,下列說法正確的有____________.

;;

④當時,yx的增大而增大;

⑤方程的根是,.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面從認知、延伸、應用三個層面來研究一種幾何模型.

1)如圖,已知點E是線段BC上一點,若∠AED=∠B=∠C.求證 ABE∽△ECD

2)如圖,已知點EF是線段BC上兩點,AEDF交于點H,若∠AHD=∠B=∠C

求證:△ABE∽△FCD

3)如圖,⊙O是等邊△ABC的外接圓,點D上一點,連接BD并延長交AC的延長線于點E;連接CD并延長交AB的延長線于點F. 猜想BF、BC、CE三線段的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

同步練習冊答案