【題目】探究題.
如圖,、分別為數(shù)軸上的兩點(diǎn),點(diǎn)對應(yīng)的數(shù)為,點(diǎn)對應(yīng)的數(shù)為.
()請寫出與、兩點(diǎn)距離相等的點(diǎn)所對應(yīng)的數(shù).
()現(xiàn)有一只電子螞蟻從點(diǎn)出發(fā),以單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻恰好從點(diǎn)出發(fā),以單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)相遇,你知道點(diǎn)對應(yīng)的數(shù)是多少嗎?
()若當(dāng)電子螞蟻從點(diǎn)出發(fā)時(shí),以單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻恰好從點(diǎn)出發(fā),以單位/秒的速度也向左運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)相遇,你知道點(diǎn)對應(yīng)的數(shù)是多少嗎?
【答案】(1)40;(2)28;(3)-260
【解析】
(1)求-20與100和的一半即是M;
(2)此題是相遇問題,先求出相遇所需的時(shí)間,再求出點(diǎn)Q走的路程,根據(jù)“左減右加”的原則,可求出-20向右運(yùn)動(dòng)到相遇地點(diǎn)所對應(yīng)的數(shù);
(3)此題是追及問題,可先求出P追上Q所需的時(shí)間,然后可求出Q所走的路程,根據(jù)“左減右加”的原則,可求出點(diǎn)D所對應(yīng)的數(shù)。
因?yàn)?/span>A、B分別是數(shù)軸上的兩點(diǎn),點(diǎn)對應(yīng)的數(shù)為,點(diǎn)對應(yīng)的數(shù)為
則AB中點(diǎn)M對應(yīng)的數(shù)是100-60=40
即M點(diǎn)對應(yīng)的數(shù)是40;
(2)由題意知P與Q的相遇時(shí)間是
所以相同時(shí)間Q點(diǎn)運(yùn)動(dòng)的路程為
即從數(shù)-20向右運(yùn)動(dòng)48個(gè)單位到數(shù)28;
(3) P點(diǎn)追到Q點(diǎn)的時(shí)間為
所以此時(shí)Q點(diǎn)起過路程為
即從數(shù)-20向左運(yùn)動(dòng)240個(gè)單位到數(shù)-260.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一批圓心角為90o,半徑為3的扇形下腳料,現(xiàn)利用這批材料截取盡可能大的正方形材料,如圖有兩種截取方法:
方法一:如圖1所示,正方形OPQR的頂點(diǎn)P、Q、R均在扇形的邊界上;
方法二:如圖2所示,正方形頂點(diǎn)C、D、E、F均在扇形邊界上.
試分別求這兩種截取方法得到的正方形面積,并說明哪種截取方法得到的正方形面積更大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),之間有一條曲線和一條線段,在線段上,己知,,是線段上一動(dòng)點(diǎn),過點(diǎn)作交曲線于點(diǎn),連接,過點(diǎn)作于點(diǎn).設(shè),兩點(diǎn)間的距離為,,兩點(diǎn)間的距離為.(當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為)小思根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小思的探究過程,請補(bǔ)充完整:
()通過取點(diǎn),畫圖,測量,得到了與的幾組值,補(bǔ)全下表:
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
()在下列平面直角坐標(biāo)系中描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.
()結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)時(shí),的長度約為__________(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E是邊AB上一點(diǎn),點(diǎn)P是對角線BD上一點(diǎn),且PE⊥PC.
⑴ 求證:PC=PE;
⑵ 若BE=2,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 ℃的條件下生長最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18 ℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=kx過點(diǎn)(1,2),與直線l2:y=﹣3x+b相交于點(diǎn)A,若l2與x軸交于點(diǎn)B(2,0),與y軸交于點(diǎn)C.
(1)分別求出直線11,l2的解析式;
(2)求△OAC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著越來越多年輕家長對低幼階段孩子英語口語的重視,某APP順勢推出了“北美外教在線授課”系列課程,提供“A課程”、“B課程”兩種不同課程供家長選擇.已知購買“A課程”3課時(shí)與“B課程”5課時(shí)共需付款410元,購買“A課程”5課時(shí)與“B課程”3課時(shí)共需付款470元.
(1)請問購買“A課程”1課時(shí)多少元?購買“B課程”1課時(shí)多少元?
(2)根據(jù)市場調(diào)研,APP銷售“A課程”1課時(shí)獲利25元,銷售“B課程”1課時(shí)獲利20元,臨近春節(jié),小融計(jì)劃用不低于3000元且不超過3600元的壓歲錢購買兩種課程共60課時(shí),請問購買“A課程”多少課時(shí)才使得APP的獲利最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項(xiàng)活動(dòng)課程以提升學(xué)生的體藝素養(yǎng),隨機(jī)抽取了部分學(xué)生對這三項(xiàng)活動(dòng)的興趣情況進(jìn)行了調(diào)查(每人從中只能選一項(xiàng)),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計(jì)圖,請你結(jié)合圖中信息解答問題.
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)本次抽樣調(diào)查的樣本容量是 ;
(3)已知該校有1200名學(xué)生,請你根據(jù)樣本估計(jì)全校學(xué)生中喜歡剪紙的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com