已知,如圖,E、F分別是AB、AC的中點(diǎn),∠ACD是△ABC的外角,延長EF交∠ACD的平分線于G點(diǎn),求證:AG⊥CG.

【答案】分析:利用三角形中位線定理推知EF∥BC.所以利用平行線的性質(zhì)、三角形角平分線的性質(zhì)以及等腰三角形的判定證得FG=FC.又由AF=CF,則FG是△ACG中AC邊上的中線,且,故△AGC是直角三角形.
解答:證明:∵E、F分別是AB、AC的中點(diǎn),
∴EF是△ABC的中位線,AF=CF,
∴EF∥BC,
∴∠FGC=∠GCD.
∵CG平分∠ACD,
∴∠FCG=∠GCD,
∴∠FCG=∠FGC,
∴FG=FC.
又∵AF=CF,
∴FG是△ACG中AC邊上的中線,且,
∴△AGC是直角三角形,
∴AG⊥CG.
點(diǎn)評:本題考查了三角形中位線定理、直角三角形斜邊上的中線定理.一個(gè)三角形,如果一邊上的中線等于這條邊的一半,那么這個(gè)三角形是以這條邊為斜邊的直角三角形.該定理可以用來判定直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,CE、CF分別是△ABC的內(nèi)外角平分線,過點(diǎn)A作CE、CF的垂線,垂足分別為E、F.
(1)求證:四邊形AECF是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AECF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知:如圖,E,F(xiàn)分別是平行四邊形ABCD的邊AD,BC的中點(diǎn).
求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△BCE、△ACD分別是以BE、AD為斜邊的直角三角形,且BE=AD,△CDE是等邊三角形.求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E,F(xiàn)分別是?ABCD的邊AD,BC的中點(diǎn).求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,BE、CF分別是△ABC的邊AC、AB上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.請你判斷線段AD與AG有什么關(guān)系?并證明.

查看答案和解析>>

同步練習(xí)冊答案