12.如圖,在△ABC中,AB=AC,取點(diǎn)D與點(diǎn)E,使得AD=AE,∠BAE=∠CAD,連結(jié)BD與CE交于點(diǎn)O.求證:
(1)△ABD≌△ACE;
(2)OB=OC.

分析 (1)由已知條件得到∠BAD=∠CAE,根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)得到∠ABD=∠ACE,由等腰三角形的性質(zhì)得到∠ABC=∠ACB由角的和差即可得到∠OBC=∠OCB,然后根據(jù)等腰三角形的判定即可得到結(jié)論.

解答 證明:(1)∵∠BAE=∠CAD,
∴∠BAD=∠CAE,
在△ABD與△ACE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS);

(2)∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵AB=AC,
∴∠ABC=∠ACB
∴∠ABC-∠ABD=∠ACB-∠ACE,
即∠OBC=∠OCB,
∴OB=OC.

點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某服裝店用7000元購(gòu)進(jìn)A、B兩種新式服裝,按標(biāo)價(jià)售出后獲得毛利潤(rùn)4000元(毛利潤(rùn)=售價(jià)-進(jìn)價(jià)),這兩種服裝的進(jìn)價(jià),標(biāo)價(jià)如表所示:
 類型
價(jià)格
 A型 B型
 進(jìn)價(jià)(元/件) 60 100
 標(biāo)價(jià)(元/件) 100 150
求這兩種服裝各購(gòu)進(jìn)的件數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,點(diǎn)O是?ABCD的對(duì)角線交點(diǎn),E為CD中點(diǎn),AE交BD于點(diǎn)F,若S△AOE=3,則S△AOB的值為6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.把下列各式中根號(hào)外的因式適當(dāng)改變后移到根號(hào)內(nèi).
(1)2$\sqrt{5}$;(2)-4$\sqrt{\frac{1}{2}}$;(3)(2-x)$\sqrt{\frac{7}{x-2}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,△BDC與△CEB在線段BC的同側(cè),CD與BE相交于點(diǎn)A,∠ABC=∠ACB,AD=AE,求證:BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知E,F(xiàn)是線段AB上的兩點(diǎn),且AE=BF,AD=BC,∠A=∠B
求證:DF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,AB=20cm,BC=16cm,點(diǎn)D為線段AB的中點(diǎn),動(dòng)點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)在射線BC上運(yùn)動(dòng),同時(shí)點(diǎn)Q以a cm/s(a>0且a≠2)的速度從C點(diǎn)出發(fā)在線段CA上運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)若AB=AC,P在線段BC上,求當(dāng)a為何值時(shí),能夠使△BPD和△CQP全等?
(2)若∠B=60°,求出發(fā)幾秒后,△BDP為直角三角形?
(3)若∠C=70°,當(dāng)∠CPQ的度數(shù)為多少時(shí),△CPQ為等腰三角形?(請(qǐng)直接寫出答案,不必寫出過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-4經(jīng)過(guò)A(-4,0),C(2,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x上的動(dòng)點(diǎn),點(diǎn)B是拋物線與y軸交點(diǎn).判斷有幾個(gè)位置能夠使以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列四個(gè)式子:
①$\sqrt{8}$$<\sqrt{10}$;②$\sqrt{65}$<8;③$\frac{\sqrt{5}-1}{2}$<1;④$\frac{\sqrt{5}-1}{2}$>0.5.
其中大小關(guān)系正確的式子的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案