已知∠MAN,AC平分∠MAN.
(1)在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:
①若∠MAN=60°,∠ABC+∠ADC=180°,則AB+AD=________AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,則AB+AD=________AC(用含α的三角函數(shù)表示),并給出證明.
解:(1)證明:∵AC平分∠MAN,∠MAN=120°, ∴∠CAB=∠CAD=60°, ∵∠ABC=∠ADC=90°, ∴∠ACB=∠ACD=30°, 1分 ∴AB=AD=AC, 2分 ∴AB+AD=AC. 3分 (2)成立. 4分 證法一:如圖,過點C分別作AM、AN的垂線,垂足分別為E、F. ∵AC平分∠MAN,∴CE=CF. ∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°, ∴∠CDE=∠ABC, 5分 ∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB, 6分 ∴AB+AD=AF+BF+AE-ED=AF+AE,由(1)知AF+AE=AC, ∴AB+AD=AC 7分 證法二:如圖,在AN上截取AG=AC,連接CG. ∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG, 5分 ∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°, ∴∠CBG=∠ADC,∴△CBG≌△CDA, 6分 ∴BG=AD, ∴AB+AD=AB+BG=AG=AC, 7分 (3)①; 8分 、. 9分 證明:由(2)知,ED=BF,AE=AF, 在Rt△AFC中,,即, ∴, 10分 ∴AB+AD=AF+BF+AE-ED=AF+AE=2, 11分 |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北黃陂北片學(xué)校八年級上第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題
已知∠MAN,AC平分∠MAN。
⑴在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°求證:AB+AD=AC;
⑵在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則⑴中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇東臺創(chuàng)新學(xué)校九年級上學(xué)期第二次階段測試數(shù)學(xué)試卷(解析版) 題型:解答題
已知∠MAN,AC平分∠MAN.
(1)在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°,我們可得結(jié)論:AB+AD=AC;
在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則上面的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
【解】
(2)在圖3中:(只要填空,不需要證明).
①若∠MAN=60°,∠ABC+∠ADC=180°,則AB+AD= AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,則AB+AD= AC(用含α的三角函數(shù)表示)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北黃陂北片學(xué)校八年級上第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知∠MAN,AC平分∠MAN。
⑴在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°求證:AB+AD=AC;
⑵在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則⑴中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com