【題目】為了表示某種食品中鈣、維生素、糖等物質(zhì)的含量的百分比,應(yīng)選用(  )

A. 條形統(tǒng)計(jì)圖 B. 折線統(tǒng)計(jì)圖

C. 扇形統(tǒng)計(jì)圖 D. 直方圖

【答案】C

【解析】

根據(jù)三種統(tǒng)計(jì)圖的特征,只有扇形統(tǒng)計(jì)圖能清楚地表示出各部分在總體中所占的百分比,所以想表示某種食品中鈣、維生素、糖等物質(zhì)的含量的百分比,根據(jù)統(tǒng)計(jì)圖的特征即可得到答案.

根據(jù)題意,表示某種食品中鈣、維生素、糖等物質(zhì)的含量的百分比,需選用扇形統(tǒng)計(jì)圖.

故答案選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是x軸上的一個(gè)動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.

(1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo);

(2)求直線BD的解析式;

(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動時(shí),直線l交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形;

(4)在點(diǎn)P的運(yùn)動過程中,是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1=∠2,求證:∠3+∠4=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉.小麗在全校隨機(jī)抽取一部分同學(xué)就“一分鐘跳繩”進(jìn)行測試,并以測試數(shù)據(jù)為樣本繪制如圖所示的部分頻數(shù)分布直方圖(從左到右依次分為六個(gè)小組,每小組含最小值,不含最大值)和扇形統(tǒng)計(jì)圖,若“一分鐘跳繩”次數(shù)不低于130次的成績?yōu)閮?yōu)秀,全校共有1200名學(xué)生,根據(jù)圖中提供的信息,下列說法不正確的是( )

A.第四小組有10人
B.第五小組對應(yīng)圓心角的度數(shù)為45°
C.本次抽樣調(diào)查的樣本容量為50
D.該!耙环昼娞K”成績優(yōu)秀的人數(shù)約為480人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)正比例函數(shù)的圖像經(jīng)過A3,-6),Bm,-4)兩點(diǎn),則m的值為()

A.2B.8C.2D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過平移后得到△A1B1C1 , 點(diǎn)P的對應(yīng)點(diǎn)為P1(a+6,b﹣2 ).

(1)直接寫出點(diǎn)A1 , B1 , C1的坐標(biāo).
(2)在圖中畫出△A1B1C1
(3)連接A A1 , 求△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“丹棱凍粑”是眉山著名特色小吃,產(chǎn)品暢銷省內(nèi)外,現(xiàn)有一個(gè)產(chǎn)品銷售點(diǎn)在經(jīng)銷時(shí)發(fā)現(xiàn):如果每箱產(chǎn)品盈利10元,每天可售出50箱;若每箱產(chǎn)品漲價(jià)1元,日銷售量將減少2箱.

(1)現(xiàn)該銷售點(diǎn)每天盈利600元,同時(shí)又要顧客得到實(shí)惠,那么每箱產(chǎn)品應(yīng)漲價(jià)多少元?

(2)若該銷售點(diǎn)單純從經(jīng)濟(jì)角度考慮,每箱產(chǎn)品應(yīng)漲價(jià)多少元才能獲利最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時(shí),水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為 米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線.將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:

①四邊形AEGF是菱形②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5

其中正確的結(jié)論是

查看答案和解析>>

同步練習(xí)冊答案