【題目】如圖,過正方形ABCD頂點B,C的⊙O與AD相切于點P,與AB,CD分別相交于點E、F,連接EF.
(1)求證:PF平分∠BFD.
(2)若tan∠FBC= ,DF= ,求EF的長.
【答案】
(1)
證明:連接OP,BF,PF,
∵⊙O與AD相切于點P,
∴OP⊥AD,
∵四邊形ABCD的正方形,
∴CD⊥AD,
∴OP∥CD,
∴∠PFD=∠OPF,
∵OP=OF,
∴∠OPF=∠OFP,
∴∠OFP=∠PFD,
∴PF平分∠BFD;
(2)
解:連接EF,
∵∠C=90°,
∴BF是⊙O的直徑,
∴∠BEF=90°,
∴四邊形BCFE是矩形,
∴EF=BC,
∵AB∥OP∥CD,BO=FO,
∴OP= AD= CD,
∵PD2=DFCD,即( )2= CD,
∴CD=4 ,
∴EF=BC=4
【解析】(1)根據(jù)切線的性質(zhì)得到OP⊥AD,由四邊形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根據(jù)平行線的性質(zhì)得到∠PFD=∠OPF,由等腰三角形的性質(zhì)得到∠OPF=∠OFP,根據(jù)角平分線的定義即可得到結(jié)論;(2)由∠C=90°,得到BF是⊙O的直徑,根據(jù)圓周角定理得到∠BEF=90°,推出四邊形BCFE是矩形,根據(jù)矩形的性質(zhì)得到EF=BC,根據(jù)切割線定理得到PD2=DFCD,于是得到結(jié)論.本題考查了切線的性質(zhì),正方形的性質(zhì),圓周角定理,等腰三角形的性質(zhì),平行線的性質(zhì),切割線定理,正確的作出輔助線是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一副三角板的兩個直角頂點重合在一起.
(1)若∠EON=140°,求∠MOF的度數(shù);
(2)比較∠EOM與∠FON的大小,并寫出理由;
(3)求∠EON+∠MOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年3月,某中學以“每天閱讀l小時”為主題,對學生最喜愛的書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)請把折線統(tǒng)計圖(圖1)補充完整;
(2)如果這所中學共有學生900名,那么請你估算最喜愛科普類書籍的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學在求多邊形的內(nèi)角和時,多算了一個內(nèi)角的度數(shù),求得內(nèi)角和為1 560°,問這個內(nèi)角是多少度?這個多邊形的邊數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=80°,點P是射線AM上動點(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于C、D.
(1)求∠CBD的度數(shù);
(2)當點P運動時,那么∠APB:∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;
(3)當點P運動到使∠ACB=∠ABD時,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入表是某周的生產(chǎn)情況超產(chǎn)為正、減產(chǎn)為負:
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
根據(jù)記錄可知前三天共生產(chǎn)多少輛;
產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)多少輛;
該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務,則超過部分每輛另獎15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列各式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…
回答下列三個問題:
(1)驗證:(2×)100= ,2100×()100= ;
(2)通過上述驗證,歸納得出:(ab)n= ; (abc)n= .
(3)請應用上述性質(zhì)計算:(﹣0.125)2017×22016×42015.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1 000元;經(jīng)粗加工后銷售,每噸利潤可達4 500元;經(jīng)精加工后銷售,每噸利潤漲至7 500元.
當?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸;如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷售或加工完畢,為此公司制訂了三種方案:
方案一:將蔬菜全部進行粗加工;
方案二:盡可能多的對蔬菜進行精加工,沒有來得及進行加工的蔬菜,在市場上直接銷售;
方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.
你認為選擇哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,垂足為點E,CE=CD,點F為CE的中點,點G為CD上的一點,連接DF,EG,AG,∠1=∠2.
(1)若CF=2,AE=3,求BE的長;
(2)求證:∠CEG=∠AGE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com