【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸是x=1,現(xiàn)給出下列4個結(jié)論:①abc>0,②2a﹣b=0,③4a+2b+c>0,④b2﹣4ac>0,其中錯誤的結(jié)論有( 。
A.1個B.2個C.3個D.4個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB的長為2,點C在圓周上,∠CAB=30°,點D是圓上一動點,DE∥AB交CA的延長線于點E,連接CD,交AB于點F.
(1)如圖1,當(dāng)∠ACD=45°時,求證:DE是⊙O的切線;
(2)如圖2,當(dāng)點F是CD的中點時,求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+x+6與x軸相交A,B兩點,與y軸相交于點C.
(1)若點E為線段BC上一動點,過點E作x軸的垂線與拋物線交于點P,垂足為F,當(dāng)PE﹣2EF取得最大值時,在拋物線y的對稱軸上找點M,在x軸上找點N,使得PM+MN+NB的和最小,若存在,求出該最小值及點N的坐標(biāo);若不存在,請說明理由.
(2)在(1)的條件下,若點P′為點P關(guān)于x軸的對稱點,將拋物線y沿射線BP′的方向平移得到新的拋物線y′,當(dāng)y′經(jīng)過點A時停止平移,將△BCN沿CN邊翻折,點B的對應(yīng)點為點B′,B′C與x軸交于點K,若拋物線y′的對稱軸上有點R,在平畫內(nèi)有點S,是否存在點R、S使得以K、B′、R、S為頂點的四邊形是菱形,若存在,直接寫出點S的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像經(jīng)過兩點、.
(1)如果、、都是整數(shù),且,求、、的值;
(2)設(shè)二次函數(shù)的圖像與軸的交點為、,與軸的交點為.如果關(guān)于的方程的兩個根都是整數(shù),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將二次函數(shù)y= (x-2)2+1的圖像沿y軸向上平移得到一條新的二次函數(shù)圖像,其中A(1,m),B(4,n)平移后對應(yīng)點分別是A′、B′,若曲線AB所掃過的面積為12(圖中陰影部分),則新的二次函數(shù)對應(yīng)的函數(shù)表達(dá)是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點坐標(biāo)分別為A(4,3),B(3,1),C(1,2),△A1B1C1與△ABC關(guān)于原點對稱.
(1)寫出A1,B1,C1的坐標(biāo);
(2)在所給的平面直角坐標(biāo)系中畫出△A1B1C1;
(3)若點A(4,3)與點M(a﹣2,b﹣4)關(guān)于原點對稱,求關(guān)于x的方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點A的坐標(biāo)為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,...,則正方形鐵片連續(xù)旋轉(zhuǎn)2019次后,點P的坐標(biāo)為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,過點作,垂足為點,過點分別作,,垂足分別為.連接交線段于點.
(1)在圖一中,,,有幾組相似的三角形,請寫出來;
(2)在圖二中,證明:;
(3)如果,,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,點是邊的中點,點是邊上一動點(不與點重合),延長交射線于點,連拉.
(1)求證:四邊形是平行四邊形。
(2)填空:
①當(dāng)的值為_______________時,四邊形是矩形;
②當(dāng)的值為_______________時,四邊形是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com