【題目】某學(xué)校體育社團(tuán)活動計劃開設(shè)“足球、籃球、排球、乒乓球”四個體育興趣小組,每個學(xué)生只能選報一項參加活動,為了解該社團(tuán)成員選擇興趣小組的情況,某調(diào)查小組在社團(tuán)中進(jìn)行了一次抽樣調(diào)查,繪制了如下尚不完整的統(tǒng)計圖表.
根據(jù)以上信息解答下列問題:
(1)本次抽樣調(diào)查的樣本容量為 ,扇形統(tǒng)計圖中的值為 .
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若該學(xué)校有學(xué)生人,有的學(xué)生選擇了參加體育社團(tuán)活動,請你估計該校選擇排球和足球這兩個興趣小組的學(xué)生大約共有多少人?
【答案】(1)60,15;(2)見解析;(3)189人
【解析】
(1)用乒乓球小組的人數(shù)除以對應(yīng)的百分比即可求出樣本容量,用1減去排球小組對應(yīng)百分比減去籃球小組對應(yīng)百分比減去乒乓球小組對應(yīng)百分比即可得出答案;
(2)計算出排球小組人數(shù),補(bǔ)全條形統(tǒng)計圖即可;
(3)用總?cè)藬?shù)乘以30%再乘以排球和足球這兩個興趣小組對應(yīng)的百分比之和即可得出答案.
解:(1)樣本容量為:18÷30%=60,
m%=1-30%-35%-20%=15%,
即m=15,
故答案為:60,15;
(2)排球小組人數(shù):60×20%=12,
;
(3)(人),
答:選擇排球和足球這兩個興趣小組的學(xué)生大約共有189人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小雨、小華、小星暑假到某超市參加社會實踐活動,在活動中他們參加了某種水果的銷售工作,已知該水果的進(jìn)價為8元/千克.他們通過市場調(diào)查發(fā)現(xiàn):當(dāng)銷售單價為10元時,那么每天可售出300千克;銷售單價每上漲1元,每天的銷售量就減少50千克.
(1)求該超市銷售這種水果,每天的銷售量y(千克)與銷售單價x(元/千克)之間的函數(shù)關(guān)系式;
(2)一段時間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于250千克,則此時該超市銷售這種水果每天獲取的利潤w(元)最大是多少?
(3)為響應(yīng)政府號召,該超市決定在暑假期間每銷售1千克這種水果就捐贈a元利潤(a≤2.5)給希望工程.公司通過銷售記錄發(fā)現(xiàn),當(dāng)銷售單價不超過13元時,每天扣除捐贈后的日銷售利潤隨銷售單價x(元/千克)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以頂點(diǎn)為圓心,適當(dāng)長為半徑畫弧,分別交邊于點(diǎn);再分別以為圓心,以大于為半徑作弧,兩弧在內(nèi)交于點(diǎn);作射線交邊于點(diǎn)若,則的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解市民對“垃圾分類知識”的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對市民進(jìn)行 隨機(jī)抽樣的問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(圖1,圖2), 請根據(jù)圖中的信息解答下列問題.
(1)這次調(diào)查的市民人數(shù)為________人,圖2中,_________;
(2)圖1中的條形統(tǒng)計圖中B等級的人數(shù);
(3)在圖2中的扇形統(tǒng)計圖中,求“C.基本了解”所在扇形的圓心角度數(shù);
(4)據(jù)統(tǒng)計,2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計對“垃圾分類知識”的知曉程度為“A.非常了解”的市民約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把有一組鄰邊相等,一組對邊平行但不相等的四邊形稱作“準(zhǔn)菱形”.
(1)證明“準(zhǔn)菱形”性質(zhì):“準(zhǔn)菱形”的一條對角線平分一個內(nèi)角.
(要求:根據(jù)圖1寫出已知,求證,證明)
已知:
求證:
證明:
(2)已知.在△ABC中,∠A=90°,AB=3,AC=4.若點(diǎn)D,E分別在邊BC,AC上,且四邊形ABDE為“準(zhǔn)菱形”.請在下列給出的△ABC中,作出滿足條件的所有“準(zhǔn)菱形”ABDE,并寫出相應(yīng)DE的長.(所給△ABC不一定都用,不夠可添)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線與坐標(biāo)軸交于點(diǎn),與拋物線交于點(diǎn),點(diǎn)的坐標(biāo)是.
(1)求拋物線的解析式;
(2)若點(diǎn)是線段上(不與重合)的一個動點(diǎn),過點(diǎn)作軸,交拋物線于點(diǎn),過點(diǎn)作,交直線于點(diǎn),以為邊作矩形,請求出矩形周長的最大值;
(3)若點(diǎn)在軸正半軸上,當(dāng)恰好是等腰三角形時,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)B在拋物線y=ax2+ax2上.
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;拋物線的解析式為 ;
(2)設(shè)拋物線的頂點(diǎn)為D,求△DBC的面積;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC中,∠C=90°,AC=6,AB=10,點(diǎn)O在BC邊的中線AD上,OB 平分∠ABC,⊙O與BC相切于點(diǎn)E.
(1)求證:AB為⊙O的切線;
(2)求⊙O的半徑;
(3)求tan∠BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥OB,過OA的中點(diǎn)C作FD∥OB交⊙O于D、F兩點(diǎn),且CD=,以O為圓心,OC為半徑作,交OB于E點(diǎn).則圖中陰影部分的面積為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com