精英家教網 > 初中數學 > 題目詳情

【題目】某出租車以汽車站為出發(fā)點,在東西方向的城市道路上進行營運,若規(guī)定向東為正,向西為負,行車依先后順序記錄如下(單位:千米):

+4,-5,+9,-3,+6,-3,-8,-4,+7,-6.

(1)計算說明出租車將最后一名乘客送到目的地,此時離汽車站多遠?在汽車站什么方向?

(2)若該出租車每千米收費標準為3元,求出租車的營業(yè)額是多少元?

【答案】(1)該出租車將最后一名乘客送到目的地,此時離汽車站3千米,在汽車站的西邊;(2)該出租車的營業(yè)額是165.

【解析】

根據題意,可以求得題目中數據的和和它們的絕對值的和,從而可以解答本題.

解:(1)由題意(+4)+(-5)+(+9)+(-3)+(+6)+(-3)+(-8)+(-4)+(+7)+(-6)=-3,=3;

所以該出租車將最后一名乘客送到目的地,此時離汽車站3千米,在汽車站的西邊;

(2)因為=55(千米),55×3=165(元).

所以該出租車的營業(yè)額是165.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】南沙群島是我國固有領土,現在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至B處時,測得該島位于正北方向20(1+ )海里的C處,為了防止某國海巡警干擾,就請求我A處的漁監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將長方形紙片按如圖所示的方式折疊,BC、BD為折痕.若ABC=25°,則DBE的度數為( 。

A. 50° B. 65° C. 45° D. 60°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題.

(1)定義:把四邊形的某些邊向兩方延長,其他各邊有不在延長所得直線的同一旁,這樣的四邊形叫做凹四邊形.如圖1,四邊形ABCD為凹四邊形.

(2)性質探究:請完成凹四邊形一個性質的證明.

已知:如圖2,四邊形ABCD是凹四邊形.

求證:∠BCD=B+∠A+∠D.

(3)性質應用:

如圖3,在凹四邊形ABCD中,∠BAD的角平分線與∠BCD的角平分線交于點E,若∠ADC=140°,AEC=102°,則∠B=_____°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙上的每個小方格都是邊長為1的正方形,△ABC 的頂點均在格點上,若 B

點的坐標為(-4,-2), 按要求回答下列問題:

(1)在圖中建立正確的平面直角坐標系;

(2)根據所建立的坐標系,寫出點A和點C的坐標;

(3)畫出△ABC關于x軸的對稱圖形△ABC;

(4)△ABC 的面積為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2+bx﹣3的圖象與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C.該拋物線的頂點為M.

(1)求該拋物線的解析式;
(2)判斷△BCM的形狀,并說明理由.
(3)探究坐標軸上是否存在點P,使得以點P,A,C為頂點的三角形與△BCM相似?若存在,請求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)用公式法解方程:x2﹣5x+3=0;

(2)用因式分解法解方程:3(x﹣3)2=2x﹣6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC為等邊三角形,ABC、ACB的平分線相交于點O,OEABBC于點E,OFACBC于點F,圖中等腰三角形共有(  )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中表示下面各點:

A03);B1,-3);C3,-5);D-3,-5);E35);F5,7);G5,0

1A點到原點O的距離是 。

2)將點C軸的負方向平移6個單位,它與點 重合。

3)連接CE,則直線CE軸是什么關系?

4)點F分別到、軸的距離是多少?

查看答案和解析>>

同步練習冊答案