【題目】某大型超市從生產(chǎn)基地購進一批水果,運輸過程中質(zhì)量損失5%,假設(shè)不計超市其他費用.
(1)如果超市在進價的基礎(chǔ)上提高5%作為售價,那么請你通過計算說明超市是否虧本;
(2)如果超市至少要獲得20%的利潤,那么這種水果的售價最低應(yīng)提高百分之幾?(結(jié)果精確到0.1%)
【答案】(1)這就是說超市要虧本;(2)售價最低應(yīng)提高約26.3%.
【解析】
(1)因為題目中缺少質(zhì)量和進價,所以可設(shè)出這兩個未知數(shù).求出總進價和總售價,讓總售價-總進價看是正數(shù)還是負(fù)數(shù),是正數(shù),不虧缺;是負(fù)數(shù),虧錢.
(2)根據(jù)關(guān)系式:售價≥進價×(1+20%)進行計算即可.
解:(1)設(shè)超市購進水果P千克,每千克Q元,
則購進大水果用去PQ元,但在售出時,水果只剩下P(1﹣5%)千克,而每千克的售價為Q(1+5%)元,于是售出后可得款P(1﹣5%)Q(1+5%)=PQ[1﹣(5%)2](元),
∵0<5%<1,
∴0<(5%)2<1或0<1﹣(5%)2<1,
∴PQ[1﹣(5%)2]<PQ,
這就是說超市要虧本;
(2)設(shè)水果售價應(yīng)提高x%,
則有P(1﹣5%)Q(1+x%)≥PQ(1+20%),
即(1﹣5%)(1+x%)≥1+20%,即1+x%≥
∴x%≥≈26.3%.
答:售價最低應(yīng)提高約26.3%.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點P在邊CD上運動,設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點M的位置也在變化.當(dāng)點M落在矩形ABCD外部時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“某工廠用如圖甲所示的長方形和正方形紙板做成如圖乙所示的 A、B 兩種長方體形狀的無蓋紙盒.現(xiàn) 有正方形紙板 120 張,長方形紙板 360 張,剛好全部用完,問能做成多少個 A 型盒子?”則下列結(jié)論 正確的個數(shù)是( )
①甲同學(xué):設(shè) A 型盒子個數(shù)為 x 個,根據(jù)題意可得: 4x 3 360
②乙同學(xué):設(shè) B 型盒中正方形紙板的個數(shù)為 m 個,根據(jù)題意可得: 3 4(120 m) 360
③A 型盒 72 個
④B 型盒中正方形紙板 48 個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=πR3(其中R為球的半徑),求:
(1)西瓜瓤與整個西瓜的體積各是多少?
(2)西瓜瓤與整個西瓜的體積比是多少?
(3)買大西瓜合算還是買小西瓜合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)探索規(guī)律觀察下面由※組成的圖案和算式,解答問題
(1)請計算1+3+5+7+9+11=__________;
(2)請猜想1+3+5+7+9+…+19=__________;
(3)請猜想1+3+5+7+9+…+(2n﹣1)=__________;
(4)請用上述規(guī)律計算:21+23+25+…+99.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連結(jié)CD和EF.
(1)求證:四邊形CDEF是平行四邊形;
(2)求四邊形BDEF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上點,且OC∥BD,AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:①AD⊥BD;②CB平分∠ABD;③∠AOC=∠AEC;④AF=DF;⑤BD=2OF.其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、B、C在數(shù)軸上表示的數(shù)分別為a,b,c,且a,b,c滿足(b+2)2+(c﹣24)2=0,多項式x|a+3|y2﹣ax3y+xy2﹣1是五次四項式.
(1)a的值為 ,b的值為 ,c的值為 ;
(2)若數(shù)軸上有三個動點M、N、P,分別從點A、B、C開始同時出發(fā)在數(shù)軸上運動,速度分別為每秒1個單位長度、7個單位長度3個單位長度.
①若點P向左運動,點M向右運動,點N先向左運動,遇到點M后回頭再向右運動,遇到點P后又回頭再向左運動,……,這樣直到點P遇到點M時三點都停止運動,求點N所走的路程;
②若點M、N向右運動,點P向左運動,點Q為線段PN中點,在運動過程中,OQ﹣MN的值是否發(fā)生變化?若不變,求其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時間為x小時,兩車之間的距離為y千米,圖中的折線表示y與x之間的函數(shù)關(guān)系.當(dāng)兩車之間的距離首次為300千米時,經(jīng)過_____小時后,它們之間的距離再次為300千米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com