【題目】如圖是在寫字臺上放置一本攤開的數(shù)學書和一個折疊式臺燈時的截面示意圖,已知攤開的數(shù)學書AB20cm,臺燈上半節(jié)DE40cm,下半節(jié)DC50cm.當臺燈燈泡E恰好在數(shù)學書AB的中點O的正上方時,臺燈上、下半節(jié)的夾角即∠EDC=120°,下半節(jié)DC與寫字臺FG的夾角即∠DCG=75°,求BC的長.(書的厚度和臺燈底座的寬度、高度都忽略不計,F、A、O、B、C、G在同一條直線上.參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41,結(jié)果精確到0.1)

【答案】BC= 5.2cm.

【解析】

如圖,作DMOEM,DNFGN.則四邊形DMON是矩形.根據(jù)題意求得∠EDM=45°,即可求得EM=DM=ON=20cm,RtDCN中,求得CN的長,根據(jù)BC=ON﹣OB﹣CN即可求BC得長.

如圖,作DMOEM,DNFGN.則四邊形DMON是矩形.

DMON,

∴∠DCN=CDM=75°,

∴∠EDM=120°﹣75°=45°,

DE=40cm,

EM=DM=ON=20≈28.2(cm),

RtDCN中,CN=CDcos75°≈13(cm),

OB=10,

BC=ON﹣OB﹣CN=28.2﹣10﹣13=5.2(cm).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD垂直BC于點D,且AD=BC,BC上方有一動點P滿足,則點PB、C兩點距離之和最小時,∠PBC的度數(shù)為(

A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB的垂直平分線EFBC于點E,交AB于點FD是線段CE的中點,ADBC于點D.若∠B36°,BC8,則AB的長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB,△COD是等腰直角三角形,點DAB上.

1)求證:△ACO≌△BDO;

2)若∠BOD30°,求∠ACD度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在直角坐標系中,四邊形ABCO為正方形,A點的坐標為(a0),D點的坐標為(0,b),且a,b滿足(a32+|b|0

1)求A點和D點的坐標;

2)若∠DAEOAB,請猜想DE,ODEB的數(shù)量關(guān)系,說明理由.

3)若∠OAD30°,以AD為三角形的一邊,坐標軸上是否存在點P,使得△PAD為等腰三角形,若存在,直接寫出有多少個點P,并寫出P點的坐標,選擇一種情況證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAEBAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為使中華傳統(tǒng)文化教育更具有實效性,軍寧中學開展以我最喜愛的傳統(tǒng)文化種類為主題的調(diào)查活動,圍繞在詩詞、國畫、對聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛哪一種?(必選且只選一種)的問題,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學生?

(2)通過計算補全條形統(tǒng)計圖;

(3)若軍寧中學共有960名學生,請你估計該中學最喜愛國畫的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=ACAB的垂直平分線交ABN,交BC的延長線于M,∠A=40°.

⑴求∠NMB的大;

⑵若將圖中的∠A的度數(shù)改為70°,其余條件不變,則∠NMB=

⑶你發(fā)現(xiàn)有什么樣的規(guī)律?若將∠A改為鈍角,對這個問題規(guī)律性的認識是否需要加以修改?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

同步練習冊答案