【題目】為了解“足球進(jìn)校園”活動(dòng)開展情況,某中學(xué)利用體育課進(jìn)行了定點(diǎn)射門測試,每人射門5次,所有班級測試結(jié)束后,隨機(jī)抽取了某班學(xué)生的射門情況作為樣本,對進(jìn)球的人數(shù)進(jìn)行整理后,繪制了不完整的統(tǒng)計(jì)圖表,該班女生有22人,女生進(jìn)球個(gè)數(shù)的眾數(shù)為2,中位數(shù)為3.
女生進(jìn)球個(gè)數(shù)的統(tǒng)計(jì)表
進(jìn)球數(shù)(個(gè)) | 人數(shù) |
0 | 1 |
1 | 2 |
2 | x |
3 | y |
4 | 4 |
5 | 2 |
(1)求這個(gè)班級的男生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出扇形統(tǒng)計(jì)圖中進(jìn)2個(gè)球的扇形的圓心角度數(shù);
(3)該校共有學(xué)生1880人,請你估計(jì)全校進(jìn)球數(shù)不低于3個(gè)的學(xué)生大約有_____人.
【答案】25
【解析】(1)根據(jù)進(jìn)球數(shù)為3個(gè)的人數(shù)除以占的百分比求出男生總?cè)藬?shù)即可;
(2)求出進(jìn)球數(shù)為4個(gè)的人數(shù),以及進(jìn)球數(shù)為2個(gè)的圓心角度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;
(3)求出進(jìn)球數(shù)不低于3個(gè)的百分比,乘以1880即可得到結(jié)果.
解:(1)這個(gè)班級的男生人數(shù)為6÷24%=25(人),
則這個(gè)班級的男生人數(shù)為25人;
(2)男生進(jìn)球數(shù)為4個(gè)的人數(shù)為25﹣(1+2+5+6+4)=7(人),進(jìn)2個(gè)球的扇形圓心角度數(shù)為360°×=72°;
補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示:
(3)根據(jù)題意得:47個(gè)學(xué)生中女生進(jìn)球個(gè)數(shù)為6+4+2=12;男生進(jìn)球數(shù)為6+7+4=17,
∴1880×=1160(人),
則全校進(jìn)球數(shù)不低于3個(gè)的學(xué)生大約有1160人.
故答案為:1160.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,BD是矩形ABCD的對角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點(diǎn),連接AB',C'D,AD',BC',如圖②.
(1)求證:四邊形AB'C'D是菱形;
(2)四邊形ABC'D′的周長為 ;
(3)將四邊形ABC'D'沿它的兩條對角線剪開,用得到的四個(gè)三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的周長為 13cm,其中一邊長為 3cm,則該等腰三角形的底邊長為()
A. 7 B. 3 C. 7 或 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的電費(fèi).月用電量不超過200度時(shí),按0.55元/度計(jì)費(fèi);月用電量超過200度時(shí),其中的200度仍按0.55元/度計(jì)費(fèi),超過部分按0.70元/度計(jì)費(fèi).設(shè)每戶家庭月用電量為x度時(shí),應(yīng)交電費(fèi)y元.
(1)分別求出0≤x≤200和x>200時(shí),y與x的函數(shù)表達(dá)式;
(2)小明家5月份交納電費(fèi)117元,小明家這個(gè)月用電多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣8,0),點(diǎn)P的坐標(biāo)為(-,0),直線y=x+b過點(diǎn)A,交y軸于點(diǎn)B,以點(diǎn)P為圓心,以PA為半徑的圓交x軸于點(diǎn)C.
(1)判斷點(diǎn)B是否在⊙P上?說明理由.
(2)求過A、B、C三點(diǎn)的拋物線的解析式;并求拋物線與⊙P另外一個(gè)交點(diǎn)為D的坐標(biāo).
(3)⊙P上是否存在一點(diǎn)Q,使以A、P、B、Q為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)證明:AD=BE;
(2)求∠AEB的度數(shù).
問題變式:
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請求出∠AEB的度數(shù)以及判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng).過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列說法中,正確的是( )
A.如果兩個(gè)三角形全等,則它們必是關(guān)于直線成軸對稱的圖形
B.如果兩個(gè)三角形關(guān)于某直線成軸對稱,那么它們是全等三角形
C.等腰三角形是關(guān)于底邊中線成軸對稱的圖形
D.一條線段是關(guān)于經(jīng)過該線段中點(diǎn)的直線成軸對稱的圖形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com