【題目】下列命題中,不正確的是( )
A.垂直平分弦的直線經(jīng)過圓心
B.平分弦的直徑一定垂直于弦
C.平行弦所夾的兩條弧相等
D.垂直于弦的直徑必平分弦所對的弧
【答案】B
【解析】A. 根據(jù)垂徑定理的推論可知,垂直平分弦的直線經(jīng)過圓心;A不符合題意。
B. 直徑是最長的弦,任意兩條直徑互相平分,但不一定互相垂直,故被平分飛弦不能是直徑;B符合題意。
C. 如圖所示,
兩弦平行,則圓周角相等,圓周角相等,則弧相等;C不符合題意。
D. 根據(jù)垂徑定理可知,垂直于弦的直徑必平分弦所對的弧;D不符合題意。
所以答案是:B.
【考點精析】利用垂徑定理和圓心角、弧、弦的關(guān)系對題目進行判斷即可得到答案,需要熟知垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。辉谕瑘A或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=6,N為AB上一點,且AN=2,∠BAC的平分線交BC于點D,M是AD上的動點,連結(jié)BM,MN,則BM+MN的最小值是( 。
A. 8 B. 10 C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4.
(1)若BC=2,求AB的長;
(2)若BC=a,AB=c,求代數(shù)式(c﹣2)2﹣(a+4)2+4(c+2a+3)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰三角形ABC的底邊長BC=20cm,D是AC上的一點,且BD=16cm,CD=12cm.
(1)求證:BD⊥AC;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E為菱形ABCD的BC邊的中點,動點F在對角線AC上運動,連接BF、EF,設(shè)AF=x,△BEF的周長為y,那么能表示y與x的函數(shù)關(guān)系的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB,CD被直線EF所截,如果要添加條件,使得MQ∥NP,那么下列條件中能判定MQ∥NP的是( )
A. ∠1=∠2 B. ∠BMF=∠DNF
C. ∠AMQ=∠CNP D. ∠1=∠2,∠BMF=∠DNF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=(x-1)2-4,AB為半圓的直徑,求這個“果圓”被y軸截得的弦CD的長 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數(shù)y= (x≠0)的圖象上.
(1)求反比例函數(shù)y= (x≠0)的解析式和點B的坐標;
(2)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE(點O與點D是對應(yīng)點),補全圖形,直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了響應(yīng)“中小學生每天鍛煉1小時”的號召,某校開展了形式多樣的“陽光體育”活動,小明對某班同學參加鍛煉的情況進行了調(diào)查與統(tǒng)計,并繪制了下面的圖1與圖2.根據(jù)你對圖1與圖2的理解,回答下列問題:
(1)小明調(diào)查的這個班級有多少名學生,參加足球鍛煉的學生人數(shù)所占的百分比是多少?
(2)請你將圖1中“乒乓球”部分補充完整.
(3)求出扇形統(tǒng)計圖中表示“足球”的扇形的圓心角的度數(shù).
(4)若這個學校共有1200名學生,估計參加乒乓球活動的學生有多少名學生?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com