【題目】如圖,是直徑,以為邊作等腰,且,與邊相交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),并交的延長(zhǎng)線于點(diǎn).
(1)求證:是的切線.
(2)若,°,求由線段、及所圍成的圖形(陰影部分)面積.
(3)若,,求的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2);(3)FD=.
【解析】
(1)證明切線需要連接圓心,由OA=OD,BA=BC,可以得到∠A=∠ODA=∠C,所以OD∥BC,由平行線性質(zhì)可得,∠ODE=∠DEC=.
(2)根據(jù)∠F=,OD⊥DF,可判斷出△ODF是等腰直角三角形,則陰影部分面積=.
(3)先由角的等量轉(zhuǎn)換求出∠FDB=∠A,可得△FDA∽△FBD,由相似比及,即可解出FD的長(zhǎng).
(1)證明:連接OD,OA=OD,∠OAD=∠ODA,
又 AB=CB,∠BAC=∠BCA,
∠ODA=∠BCA,OD // BC,
又 DE⊥BC,DE⊥OD,且DF經(jīng)過(guò)⊙O的半徑OD的外端點(diǎn),
DF是⊙O的切線.
(2)解: ∵∠F=45°,DF⊥OD
∴∠FOD=45°,
∴△ODF是等腰直接三角形,
∴,
∴.
∴
∴
(3)解:由(1)知, ∠FDB=90°-∠ODB,
又 ∴∠FAD =90°-∠OBD,
∴OD =OB,
∴∠ODB =∠OBD,
∴∠FDB =∠FAD .
在FDB和FAD中,
∴∠FDB =∠FAD,
∠BFD =∠DFA,
∴FDB∽∠FAD.
∴,
∴ ①,
又
∴
∴ ②.
把①代入②得
∴FD=3FB
又由勾股定理
∴AB=
∴OD=
由勾股定理:
即 ③
把①代入③,解得
FD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°.
(1)如圖1,若直線AD與BC相交于M,過(guò)點(diǎn)B作AM的垂線,垂足為D,連接CD并延長(zhǎng)BD至E,使得DE=DC,過(guò)點(diǎn)E作EF⊥CD于F,證明:AD=EF+BD.
(2)如圖2,若直線AD與CB的延長(zhǎng)線相交于M,過(guò)點(diǎn)B作AM的垂線,垂足為D,連接CD并延長(zhǎng)BD至E,使得DE=DC,過(guò)點(diǎn)E作EF⊥CD交CD的延長(zhǎng)線于F,探究:AD、EF、BD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)P為△ABC邊上一動(dòng)點(diǎn),沿著A→C→B的路徑行進(jìn),點(diǎn)P作PD⊥AB,垂足為D,設(shè)AD=x,△APD的面積為y,圖2是y關(guān)于x的函數(shù)圖象,則依據(jù)圖中的數(shù)量關(guān)系計(jì)算△ACB的周長(zhǎng)為( )
A.B.15C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開(kāi)展了尋找古樹(shù)活動(dòng).如圖,在一個(gè)坡度(或坡比)=1:2.4的山坡AB上發(fā)現(xiàn)有一棵占樹(shù)CD.測(cè)得古樹(shù)底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹(shù)頂端D的仰角∠AED=48°(古樹(shù)CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹(shù)CD與直線AE垂直),則古樹(shù)CD的高度約為( )(參考數(shù)據(jù):°≈0.73,cos8°≈0.67,tan48°≈1.11)
A.17.0米B.21.9米C.23.3米D.33.3米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)C,交x軸于點(diǎn)A(﹣1,0)、B(4,0)(A點(diǎn)在B點(diǎn)左側(cè)),頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)將△ABC沿直線BC對(duì)折,點(diǎn)A的對(duì)稱(chēng)點(diǎn)為A′,試求A′的坐標(biāo);
(3)拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使∠BPC=∠BAC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為普及防治新型冠狀病毒感染的科學(xué)知識(shí)和有效方法,不斷增強(qiáng)同學(xué)們的自我保護(hù)意識(shí),學(xué)校舉辦了新型冠狀病毒疫情防控網(wǎng)絡(luò)知識(shí)競(jìng)答活動(dòng),試卷題目共10題,每題10分.現(xiàn)分別從七年級(jí)的三個(gè)班中各隨機(jī)取10名同學(xué)的成績(jī)(單位:分),收集數(shù)據(jù)如表:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分?jǐn)?shù) | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | a | 1 |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | |
2班 | 83 | c | d |
3班 | b | 80 | 80 |
根據(jù)以上信息回答下列問(wèn)題:
(1)請(qǐng)直接寫(xiě)出表格中a,b,c,d的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績(jī)比較好?請(qǐng)說(shuō)明理由;
(3)為了讓同學(xué)們重視疫情防控知識(shí)的學(xué)習(xí),學(xué)校將給競(jìng)答成績(jī)滿(mǎn)分的同學(xué)頒發(fā)獎(jiǎng)狀,該校七年級(jí)新生共600人,試估計(jì)需要準(zhǔn)備多少?gòu)埅?jiǎng)狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=6cm,AC=BD=4cm.∠CAB=∠DBA,點(diǎn)P在線段AB上以2cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為xcm/s,若使得△ACP與△BPQ全等,則x的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料:對(duì)任意一個(gè)n位正整數(shù)M(n≥3),若M與它的十位數(shù)字的p倍的差能被整數(shù)q整除,則稱(chēng)這個(gè)數(shù)為“p階q級(jí)數(shù)”,例如:712是“5階7級(jí)數(shù)”,因?yàn)?/span>=101;712也是“12階10級(jí)數(shù)”,因?yàn)?/span>=70.
(1)若415是“5階k級(jí)數(shù)”,且k<300,求k的最大值;
(2)若一個(gè)四位數(shù)M的百位數(shù)字比個(gè)位數(shù)字大2,十位數(shù)字為1,且M既是“4階13級(jí)數(shù)”又是“6階5級(jí)數(shù)”,求這個(gè)四位數(shù)M.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,作∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,連接EF.若AE=16,AF=10,則BF的長(zhǎng)為( ).
A.10B.12C.14D.16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com