【題目】已知AB=10cm,點(diǎn)C在直線AB上,如果BC=4cm,點(diǎn)D是線段AC的中點(diǎn),求線段BD的長(zhǎng)度.
【答案】解:∵AB=10cm,BC=4cm,點(diǎn)C在直線AB上, ∴點(diǎn)C在線段AB上或在線段AB的延長(zhǎng)線上.
①當(dāng)點(diǎn)C在線段AB上時(shí),如圖①,
則有AC=AB﹣BC=10﹣4=6.
∵點(diǎn)D是線段AC的中點(diǎn),
∴DC= AC=3,
∴DB=DC+BC=3+4=7;
②當(dāng)點(diǎn)C在線段AB的延長(zhǎng)線上時(shí),如圖②,
則有AC=AB+BC=10+4=14.
∵點(diǎn)D是線段AC的中點(diǎn),
∴DC= AC=7,
∴DB=DC﹣BC=7﹣4=3.
綜上所述:線段BD的長(zhǎng)度為7cm或3cm.
【解析】由于AB>BC,點(diǎn)C在直線AB上,因此可分點(diǎn)C在線段AB上、點(diǎn)C在線段AB的延長(zhǎng)線上兩種情況討論,只需把BD轉(zhuǎn)化為DC與BC的和或差,就可解決問(wèn)題.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解兩點(diǎn)間的距離(同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開(kāi)平方,距離公式要牢記).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分9分)已知點(diǎn)D是邊AB上一動(dòng)點(diǎn)(不與A,B重合)分別過(guò)點(diǎn)A,B向直線CD作垂線,垂足分別為E,F(xiàn),O為邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)D與點(diǎn)O重合時(shí),AE與BF的位置關(guān)系是____________,OE與OF的數(shù)量關(guān)系是__________;
(2)如圖2,當(dāng)點(diǎn)D在線段AB上不與點(diǎn)O重合時(shí),試判斷OE與OF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)D在線段BA的延長(zhǎng)線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請(qǐng)畫(huà)出圖形并寫(xiě)出主要證明思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,AB=AC,以AB為直徑作⊙O,與BC交于點(diǎn)D,過(guò)D作AC的垂線,垂足為E.
證明:(1)BD=DC;(2)DE是⊙O切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的一邊OA在x軸上,點(diǎn)B的坐標(biāo)為(4,3),雙曲線(x>0)交線段BC于點(diǎn)P(不與端點(diǎn)B、C重合),交線段AB于點(diǎn)Q
(1)若P為邊BC的中點(diǎn),求雙曲線的函數(shù)表達(dá)式及點(diǎn)Q的坐標(biāo);
(2)求k的取值范圍;
(3)連接PQ,AC,判斷:PQ∥AC是否總成立?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)箱子中放有紅、黃、黑三種只有顏色不同的小球,三個(gè)人先后去摸球,一人摸一次,一次摸出一個(gè)小球,摸出后放回,摸出黑色小球?yàn)橼A,這個(gè)游戲是( )
A. 公平的
B. 不公平的
C. 先摸者贏的可能性大
D. 后摸者贏的可能性大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程組、不等式(組)
(1)
(2)
(3)
(4)(在數(shù)軸上表示解集并寫(xiě)出符合的整數(shù)解)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com