【題目】如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA= .特別地,當(dāng)點D、E重合時,規(guī)定:λA=0.另外,對λB、λC作類似的規(guī)定.

(1)如圖2,在△ABC中,∠C=90°,∠A=30°,求λA、λC;
(2)在每個小正方形邊長均為1的4×4的方格紙上,畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且λA=2,面積也為2;
(3)判斷下列三個命題的真假(真命題打“√”,假命題打“×”):
①若△ABC中λA<1,則△ABC為銳角三角形;
②若△ABC中λA=1,則△ABC為直角三角形;
③若△ABC中λA>1,則△ABC為鈍角三角形.

【答案】
(1)

解:如圖,

作BC邊上的中線AD,又AC⊥DC,

∴λA= =1,

過點C分別作AB邊上的高CE和中線CF,

∵∠ACB=90°,

∴AF=CF,

∴∠ACF=∠CAF=30°,

∴∠CFE=60°,

∴λC= =cos60°=


(2)

解:如圖:


(3)解:×;√;√
【解析】解: (3)①在第(1)題中,λC= ,而△ABC是直角三角形,故命題錯誤;②λA=1時,過頂點A的高線的垂足與三角形的頂點一定重合,故三角新一定是直角三角形,故命題正確;③λA>1時,過頂點A的高線的垂足與三角形的頂點一定在邊的延長線上,則三角形一定是鈍角三角形,故命題正確.
所以答案是:①×,②√,③√.
【考點精析】本題主要考查了三角形的“三線”和解直角三角形的相關(guān)知識點,需要掌握1、三角形角平分線的三條角平分線交于一點(交點在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(交點在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi);解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O是坐標(biāo)原點,點B(0,12),點A在第一象限內(nèi),AOB為等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,點D從點B出發(fā),以每秒2個單位的速度沿y軸向終點O運動,連接DA,過點A作AEAD,射線AE交x軸于點E,連接BE,交線段AC于點F,交線段OA于點G.

(1)請直接寫出A的坐標(biāo);

(2)點D運動的時間為t秒時,用含t的代數(shù)式表示ACD的面積S,并寫出t的取值范圍;

(3)在(2)的條件下,當(dāng)四邊形DAEO的面積等于6S時,求AGF的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊上一個動點(DB、C均不重合),AD=AE,∠DAE=60°,連接CE

1)求證:ABD≌△ACE;

2)求證:CE平分∠ACF

3)若AB=2,當(dāng)四邊形ADCE的周長取最小值時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】丁丁想在一個矩形材料中剪出如圖陰影所示的梯形,作為要制作的風(fēng)箏的一個翅膀.請你根據(jù)圖中的數(shù)據(jù)幫丁丁計算出BE、CD的長度(精確到個位, ≈1.7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視熱播節(jié)目朗讀者激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購進一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機抽取部分學(xué)生進行問卷調(diào)查,被調(diào)查學(xué)生須從文史類、社科類、小說類、生活類中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了   名學(xué)生;

(2)將條形統(tǒng)計圖補充完整;

(3)圖2小說類所在扇形的圓心角為   度;

(4)若該校共有學(xué)生2500人,估計該校喜歡社科類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點 O為數(shù)軸原點,點A表示的數(shù)是4,將線段OA沿數(shù)軸移動,移動后的線段記為O′A′.

(1)當(dāng)點O′恰好是OA的中點時,數(shù)軸上點A′表示的數(shù)為

(2)設(shè)點A的移動距離AA′=x.

①當(dāng)O′A=1時,求x的值;

②D為線段AA′的中點,點E在線段OO′上,且OE=OO′,當(dāng)點D,E所表示的數(shù)互為相反數(shù)時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點P從點A出發(fā),以每秒2cm的速度沿折線A﹣C﹣B﹣A運動,設(shè)運動時間為t秒(t>0).

(1)若點PAC上,且滿足PA=PB時,求出此時t的值;

(2)若點P恰好在∠BAC的角平分線上,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(2,1)、B(3,5)、C(5,-2)、D(0,1)、E(-1,5)、F(-3,-2),則△ABC與△DEF(  )

A. 關(guān)于x軸對稱 B. 關(guān)于直線x=1對稱

C. 關(guān)于點(1,0)對稱 D. 以上答案都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠BACBCD.若BC=16,CD=6,則AC=_____

查看答案和解析>>

同步練習(xí)冊答案