【題目】如圖,A,E,F(xiàn),C在一條直線上,AE=CF,過E,F(xiàn)分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF.
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.
(1)如圖①,當點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明
如圖,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG//CD (已知)
∴∠2=_________(____________________________)
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC//__________(_____________________________)
∴∠B+________=180°(______________________________)
又∵∠B=50°
∴∠BDE=________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲處表示兩條路的交叉口,乙處也是兩條路的交叉口,如果用(1,3)表示甲處的位置,那么“(1,3)→(2,3)→(3,3)→(4,3)→(4,2)→(4,1)→(4,0)”表示甲處到乙處的一種路線,若圖中一個單位長度表示5Km,請你用上述表示法寫出甲處到乙處的另兩種走法,最短距離是多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是根據(jù)對初一(1)班的50名同學平時最愛吃的食物的種類進行的問卷調(diào)查繪制成的統(tǒng)計表,請?zhí)顫M缺少的項并回答后面的問題.
肉類 | 蔬菜類 | 瓜果類 | 水產(chǎn)類 | |
男生 | 22 | 1 | 2 | |
女生 | 4 | 5 | 3 | |
頻率 | 64% | 14% | 12% |
(1)選擇適當?shù)慕y(tǒng)計圖表示男生平時最愛吃的食物的種類情況;
(2)就給出的初一(1)班的同學平時最愛吃的食物的種類情況,請你結(jié)合自己的年齡特點簡略談?wù)勛约旱目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩市相距150千米,分別從A、B處測得國家級風景區(qū)中心C處的方向角如圖所示,風景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關(guān)部門設(shè)計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區(qū),請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求證:該方程有兩個實數(shù)根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個整數(shù)點(點A在點B左側(cè)),且m為正整數(shù),求此拋物線的表達式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點C,點B關(guān)于y軸的對稱點為D,設(shè)此拋物線在﹣3≤x≤﹣ 之間的部分為圖象G,如果圖象G向右平移n(n>0)個單位長度后與直線CD有公共點,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD=CD=AB.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.
請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點D,垂足為E,當BD=5cm,∠B=30°時,求△ACD的周長.
(2)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點,DE⊥AB,垂足為E,求BE:EA的值.
(3)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點,且AE=DC,AD、BE交于點P,作BQ⊥AD于Q,若BP=2,求PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com