【題目】亞健康是時下社會熱門話題,進(jìn)行體育鍛煉是遠(yuǎn)離亞健康的一種重要方式,為了解某校八年級學(xué)生每天進(jìn)行體育鍛煉的時間情況,隨機抽樣調(diào)查了100名初中學(xué)生,根據(jù)調(diào)查結(jié)果得到如圖所示的統(tǒng)計圖表.
類別 | 時間t(小時) | 人數(shù) |
A | t≤0.5 | 5 |
B | 0.5<t≤1 | 20 |
C | 1<t≤1.5 | a |
D | 1.5<t≤2 | 30 |
E | t>2 | 10 |
請根據(jù)圖表信息解答下列問題:
(1)a= ;
(2)補全條形統(tǒng)計圖;
(3)小王說:“我每天的鍛煉時間是調(diào)查所得數(shù)據(jù)的中位數(shù)”,問小王每天進(jìn)行體育鍛煉的時間在什么范圍內(nèi)?
(4)若把每天進(jìn)行體育鍛煉的時間在1小時以上定為鍛煉達(dá)標(biāo),則被抽查學(xué)生的達(dá)標(biāo)率是多少?
【答案】(1) 35;(2)詳見解析;(3)小王每天進(jìn)行體育鍛煉的時間在1<t≤1.5范圍內(nèi);(4)75%.
【解析】
(1)100減去已知數(shù),可得a;(2)根據(jù)a=35畫出條形圖;(3)中位數(shù)是第50個和51個數(shù)據(jù)的平均數(shù);(4)用樣本的達(dá)標(biāo)率估計總體的達(dá)標(biāo)情況.
(1)a=100﹣5﹣20﹣30﹣10=35,
故答案為:35;
(2)條形統(tǒng)計圖如下:
(3)∵100÷2=50,25<50<60,
∴第50個和51個數(shù)據(jù)都落在C類別1<t≤1.5的范圍內(nèi),
即小王每天進(jìn)行體育鍛煉的時間在1<t≤1.5范圍內(nèi);
(4)被抽查學(xué)生的達(dá)標(biāo)率=×100%=75%.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
④ 的最小值為3.
其中,正確結(jié)論的個數(shù)為( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD邊長為1,∠EAF=45°,AE=AF,則有下列結(jié)論:
①∠1=∠2=22.5°;
②點C到EF的距離是 -1;
③△ECF的周長為2;
④BE+DF>EF.
其中正確的結(jié)論是 . (寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示我國漢代數(shù)學(xué)家趙爽在注解《周脾算經(jīng)》時給出的“趙爽弦圖”,圖中的四個直角三角形是全等的,如果大正方形ABCD的面積是小正方形EFGH面積的13倍,那么tan∠ADE的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地新建的一個企業(yè),每月將生產(chǎn)1960噸污水,為保護(hù)環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:
污水處理器型號 | A型 | B型 |
處理污水能力(噸/月) | 240 | 180 |
已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.
(1)求每臺A型、B型污水處理器的價格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象是第一、三象限的角平分線.
實驗與探究:由圖觀察易知A(0,2)關(guān)于直線的對稱點A′的坐標(biāo)為(2,0),請在圖中分別標(biāo)明B(5,3) 、C(-2,5) 關(guān)于直線的對稱點B′、C′的位置,并寫出它們的坐標(biāo): B′____________、C′___________;
歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點的坐標(biāo),你會發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點P(m,n)關(guān)于第一、三象限的角平分線的對稱點的坐標(biāo)為____________;
運用與拓廣:已知兩點D(0,-3)、E(-1,-4),試在直線上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀,我們知道,在數(shù)軸上,x=1表示一個點,而在平面坐標(biāo)系中,x=1表示一條直線;我們還知道,以二元一次方程2x-y+1=0的所有解為坐標(biāo)的點組成的圖形,就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖1,可以得出,直線x=1與直線y=2x+1的交點P的坐標(biāo)(1,3)就是方程組的解,所以這個方程組的解為
在直角坐標(biāo)系中,x≤1表示一個平面區(qū)域,即直線x=1以及它的左側(cè)的部分,如圖2;y≤2x+1,也表示一個平面區(qū)域,即直線y=2x+1以及它下方的部分,如圖3.
回答下列問題:
(1)在直角坐標(biāo)系(如圖4)中,用作圖的方法求方程組的解;
(2)用陰影表示所圍成的區(qū)域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E,CF⊥BD于F,連結(jié)AF,CE.求證:四邊形AECF是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com