【題目】在矩形ABCD中,點E在BC上,AE=AD,DF⊥AE,垂足為F.
(1)求證:DF=AB;
(2)若∠FDC=30°,且AB=4,求AD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:對于排好順序的三個數(shù): 稱為數(shù)列.將這個數(shù)列如下式進(jìn)行計算: ,,,所得的三個新數(shù)中,最大的那個數(shù)稱為數(shù)列的“關(guān)聯(lián)數(shù)值”.
例如:對于數(shù)列因為所以數(shù)列的“關(guān)聯(lián)數(shù)值”為6.進(jìn)一步發(fā)現(xiàn):當(dāng)改變這三個數(shù)的順序時,所得的數(shù)列都可以按照上述方法求出“關(guān)聯(lián)數(shù)值”,如:數(shù)列的 “關(guān)聯(lián)數(shù)值”為0;數(shù)列的“關(guān)聯(lián)數(shù)值”為3...而對于“”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,“關(guān)聯(lián)數(shù)值"的最大值為6.
(1)數(shù)列的“關(guān)聯(lián)數(shù)值”為_______;
(2)將“”這三個數(shù)按照不同的順序排列,可得到若干個不同的數(shù)列,這些數(shù)列的“關(guān)聯(lián)數(shù)值”的最大值是_______, 取得“關(guān)聯(lián)數(shù)值”的最大值的數(shù)列是______
(3)將“”這三個數(shù)按照不同的順序排列,可得到若干個不同的數(shù)列,這些數(shù)列的“關(guān)聯(lián)數(shù)值”的最大值為10,求的值,并寫出取得“關(guān)聯(lián)數(shù)值”最大值的數(shù)列.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2014年開始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改資金(萬元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請你認(rèn)真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬元.
①預(yù)計生產(chǎn)成本每件比2016年降低多少萬元?
②若打算在2017年把每件產(chǎn)品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結(jié)果精確到0.01萬元).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在數(shù)軸上A點表示數(shù),B點表示數(shù),、滿足||+||=0;
(1)點A表示的數(shù)為_____;點B表示的數(shù)為_____;
(2)若在原點O處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點B處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為t(秒),
①當(dāng)t=1時,甲小球到原點的距離=_____;乙小球到原點的距離=_____.
當(dāng)t=3時,甲小球到原點的距離=_____;乙小球到原點的距離=_____.
②試探究:甲,乙兩小球到原點的距離可能相等嗎?若不能,請說明理由.若能,請直接寫出甲,乙兩小球到原點的距離相等時經(jīng)歷的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AB上一點,點D為BC的中點,且AB=18cm,AC=4CD.
(1)圖中共有 條線段;
(2)求AC的長;
(3)若點E在直線AB上,且EA=2cm,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某客運公司的特快巴士與普通巴士同時從甲地出發(fā),以各自的速度勻速向乙地行駛,普通巴士到達(dá)乙地后停止,特快巴士到達(dá)乙地停留45分鐘后,按原路以另一速度勻速返回甲地,已知兩輛巴士分別距乙地的路程y(千米)與行駛時間x(小時)之間的函數(shù)圖象如圖所示.求普通巴士到達(dá)乙地時,特快巴士與甲地之間的距離為_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,坡AB的坡比為1:2.4,坡長AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點H、A、T在同一條地平線MN上.
(1)試問坡AB的高BT為多少米?
(2)若某人在坡AB的坡腳A處和中點D處,觀測到建筑物頂部C處的仰角分別為60°和30°,試求建筑物的高度CH.(精確到米, ≈1.73, ≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC中,∠ABC=45°,點E為AC上的一點,連接BE,在BC上找一點G,使得AG=AB,AG交BE于K.
(1)若∠ABE=30°,且∠EBC=∠GAC,BK=4,求AC的長度.
(2)如圖2,過點A作DA⊥AE交BE于點D,過D、E分別向AB所在的直線作垂線,垂足分別為點M、N,且NE=AM,若D為BE的中點,證明: DG=2AG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD,BE平分,交AD于點E,F是BE的中點,G是BC的中點,連按EC,若,,則FG的長為________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com