【題目】如圖,EF、BG、DH 都垂直于 FH,AE⊥AB 且 AE=AB,BC⊥CD 且 BC=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計(jì)算圖中陰影部分的面積 S 是_____.
【答案】50
【解析】
由 AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而 AE=AB,∠
EFA=∠AGB,由此可以證明△EFA≌△ABG,所以 AF=BG,AG=EF; 同理證得△BGC≌△DHC,GC=DH,CH=BG.故 FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面積的割補(bǔ)法和面積公式即可求出圖形的面積.
∵AE⊥AB 且 AE=AB,EF⊥FH,BG⊥FH
∴∠EAB=∠EFA=∠BGA=90°,
∵∠EAF+∠BAG=90°,∠ABG+∠BAG=90°
∴∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG
∴△EFA≌△ABG(AAS)
∴AF=BG,AG=EF.
同理證得△BGC≌△DHC(AAS)得 GC=DH,CH=BG. 故 FH=FA+AG+GC+CH=3+6+4+3=16,
故 S=(6+4)×16﹣3×4﹣6×3=50.
故答案為:50.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以A為圓心,AB為半徑畫弧,交AD于F,再分別以B、F為圓心,大于 BF的長為半徑畫弧,兩弧相交于點(diǎn)G,若BF=6,AB=5,則AE的長為( )
A.11
B.6
C.8
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 中, , , , , ,點(diǎn) 在 上, 交 于點(diǎn) , 交 于點(diǎn) ,當(dāng) 時, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE.
⑴若∠BAE=40°,求∠C的度數(shù);
⑵若△ABC周長13cm,AC=6cm,求DC長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,OA=OB=6,∠O=120°,以點(diǎn)O為圓心的⊙O和底邊AB相切于點(diǎn)C,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數(shù)為 ;
②若∠ACB=140°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)∠ACE<180°且點(diǎn)E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE 是 BC 邊的中線,過點(diǎn)C 作 CF⊥AE,垂足為點(diǎn) F,過點(diǎn) B 作 BD⊥BC 交 CF 的延長線于點(diǎn) D.
(1)試證明:AE=CD;
(2)若 AC=12cm,求線段 BD 的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點(diǎn)D,∠ABD=∠ACB.
(1)求證:AB是圓的切線;
(2)若點(diǎn)E是BC上一點(diǎn),已知BE=4,tan∠AEB= ,AB:BC=2:3,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象經(jīng)過二次函數(shù)y=ax2+bx圖象的頂點(diǎn)(﹣ ,m)(m>0),則有( )
A.a=b+2k
B.a=b﹣2k
C.k<b<0
D.a<k<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com