【題目】如圖,長方形ABCD中,AB=4,AD=2.點Q與點P同時從點A出發(fā),點Q以每秒1個單位的速度沿A→D→C→B的方向運動,點P以每秒3個單位的速度沿A→B→C→D的方向運動,當(dāng)P,Q兩點相遇時,它們同時停止運動.設(shè)Q點運動的時間為(秒),在整個運動過程中,當(dāng)△APQ為直角三角形時,則相應(yīng)的的值或取值范圍是_________.
【答案】0<≤或x=2.
【解析】由題意可得當(dāng)0<x≤△AQM是直角三角形,當(dāng)<x<2時△AQM是銳角三角形,當(dāng)x=2時,△AQM是直角三角形,當(dāng)2<x<3時△AQM是鈍角三角形.
當(dāng)點P在AB上時,點Q在AD上時,此時△APQ為直角三角形,則0<x≤;
當(dāng)點P在BC上時,點Q在AD上時,此時△APQ為銳角三角形,則<x<2;
當(dāng)點P在C處,此時點Q在D處,此時△APQ為直角三角形,則x=2時;
當(dāng)點P在CD上時,點Q在DC上時,此時△APQ為鈍角三角形,則2<x<3.
故答案是:0<x≤或x=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知 AD//BC, 點 E 為 CD 上一點,AE、BE 分別平分∠DAB、∠CBA,BE交 AD 的延長線于點 F.求證:(1)△ABE≌△AEF;(2) AD+BC=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線EF∥GH,點B、A分別在直線EF、GH上,連接AB,在AB左側(cè)作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直線BD平分∠FBC交直線GH于D
(1) 若點C恰在EF上,如圖1,則∠DBA=_________
(2) 將A點向左移動,其它條件不變,如圖2,則(1)中的結(jié)論還成立嗎?若成立,證明你的結(jié)論;若不成立,說明你的理由
(3) 若將題目條件“∠ACB=90°”,改為:“∠ACB=120°”,其它條件不變,那么∠DBA=_________(直接寫出結(jié)果,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小冬和小松正在玩“擲骰子,走方格”的游戲.游戲規(guī)則如下:(1)擲一枚質(zhì)地均勻的正方體骰子(骰子六個面的數(shù)字分別是1至6),落地后骰子向上一面的數(shù)字是幾,就先向前走幾格,然后暫停.(2)再看暫停的格子上相應(yīng)的文字要求,按要求去做后,若還有新的文字要求,則繼續(xù)按新要求去做,直至無新要求為止,此次走方格結(jié)束.下圖是該游戲的部分方格:
大本營 | 1 對自己說 “加油!” | 2 后退一格 | 3 前進(jìn)三格 | 4 原地不動 | 5 對你的小伙伴說“你好!” | 6 背一首古詩 |
例如:小冬現(xiàn)在的位置在大本營,擲骰子,骰子向上一面的數(shù)字是2,則小冬先向前走兩格到達(dá)方格2,然后執(zhí)行方格2的文字要求“后退一格”,則退回到方格1,再執(zhí)行方格1的文字要求:對自己說“加油!”.小冬此次“擲骰子,走方格”結(jié)束,最終停在了方格1.如果小松現(xiàn)在的位置也在大本營,那么他擲一次骰子最終停在方格6的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生的身高如下(單位:cm):
160 163 152 161 167 154 158 171 156 168
178 151 156 154 165 160 168 155 162 173
158 167 157 153 164 172 153 159 154 155
169 163 158 150 177 155 166 161 159 164
171 154 157 165 152 167 157 162 155 160
(1)小麗用簡單隨機(jī)抽樣的方法從這50個數(shù)據(jù)中抽取一個容量為5的樣本:161,155,174,163,152,請你計算小麗所抽取的這個樣本的平均數(shù);
(2)小麗將這50個數(shù)據(jù)按身高相差4cm分組,并制作了如下的表格:
身高 | 頻數(shù) | 頻率 |
147.5~151.5 |
| 0.06 |
151.5~155.5 |
|
|
155.5~159.5 | 11 | m |
159.5~163.5 |
| 0.18 |
163.5~167.5 | 8 | 0.16 |
167.5~171.5 | 4 |
|
171.5~175.5 | n | 0.06 |
175.5~179.5 | 2 |
|
合計 | 50 | 1 |
①m= ,n= ;
②這50名學(xué)生身高的中位數(shù)落在哪個身高段內(nèi)?身高在哪一段的學(xué)生數(shù)最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB⊥AC,AB=6,AD=10,點P在邊AD上運動,以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點.
(1)如圖2,當(dāng)⊙P與邊CD相切于點F時,求AP的長;
(2)不難發(fā)現(xiàn),當(dāng)⊙P與邊CD相切時,⊙P與平行四邊形ABCD的邊有三個公共點,隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點的個數(shù)也在變化,若公共點的個數(shù)為4,直接寫出相對應(yīng)的AP的值的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生態(tài)體驗園推出了甲、乙兩種消費卡,設(shè)入園次數(shù)為x時所需費用為y元,選擇這兩種卡消費時,y與x的函數(shù)關(guān)系如圖所示,解答下列問題
(1)分別求出選擇這兩種卡消費時,y關(guān)于x的函數(shù)表達(dá)式;
(2)請根據(jù)入園次數(shù)確定選擇哪種卡消費比較合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是BC邊上的一點,∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點F.
(1)填空:∠AFC=______度;
(2)求∠EDF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com