【題目】在一次中學(xué)生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下兩幅統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:

(1)扇形統(tǒng)計圖中a ,初賽成績?yōu)?.70m所在扇形圖形的圓心角為

(2)補全條形統(tǒng)計圖;

(3)這組初賽成績的眾數(shù)是 m,中位數(shù)是

(4)根據(jù)這組初賽成績確定8人進(jìn)入復(fù)賽,那么初賽成績?yōu)?.60m的運動員楊強能否進(jìn)入復(fù)賽?為什么?

【答案】(1)15,72°.(2)補圖見解析,(3)眾數(shù)為1.60m,中位數(shù)為1.60m;(4)楊強不一定進(jìn)入復(fù)賽.

【解析】試題分析:(1)用整體1減去其它所占的百分比,即可求出a的值;用360°乘以初賽成績?yōu)?.70m所占的百分比即可;
(2)根據(jù)跳1.50m的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以跳170m的人數(shù)所占的百分比,求出跳170m的人數(shù),從而補全統(tǒng)計圖;
(3)根據(jù)眾數(shù)和中位數(shù)的定義分別進(jìn)行解答即可;
(4)根據(jù)中位數(shù)的意義可直接判斷出能否進(jìn)入復(fù)賽.

試題解析:(1)根據(jù)題意得:
1-20%-10%-25%-30%=15%;
則a的值是15;
初賽成績?yōu)?.70m所在扇形圖形的圓心角為:360°×20%=72°;

(2)跳170m的人數(shù)是: ×20%=4(人),
補圖如下:

(3)∵在這組數(shù)據(jù)中,1.60m出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,
∴這組數(shù)據(jù)的眾數(shù)是1.60m;
將這組數(shù)據(jù)從小到大排列,其中處于中間的兩個數(shù)都是1.60m,
則這組數(shù)據(jù)的中位數(shù)是1.60m.

(4)不一定,理由如下:
因為由高到低的初賽成績中有4人是1.70m,有3人是1.65m,第8人的成績?yōu)?.60m,但是成績?yōu)?.60m的有6人,所以楊強不一定進(jìn)入復(fù)賽.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工程隊維修同一段路面,甲隊先清理路面,乙隊在甲隊清理后鋪設(shè)路面.乙隊在中途停工了一段時間,然后按停工前的工作效率繼續(xù)工作.在整個工作過程中,甲隊清理完的路面長y(米)與時間x(時)的函數(shù)圖象為線段OA,乙隊鋪設(shè)完的路面長y(米)與時間x(時)的函數(shù)圖象為折線BC-CD-DE,如圖所示,從甲隊開始工作時計時.

(1)分別求線段BC、DE所在直線對應(yīng)的函數(shù)關(guān)系式.

(2)當(dāng)甲隊清理完路面時,求乙隊鋪設(shè)完的路面長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程

(1)求證:不論k取什么實數(shù)值,這個方程總有實數(shù)根;

(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個方程的兩個根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)科學(xué)家估計,地球年齡大約是4 600 000 000年,這個數(shù)用科學(xué)記數(shù)法表示為( )
A.4.6×108
B.46×108
C.4.6×109
D.0.46×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,

(1)若半徑為1的⊙O經(jīng)過點A、B、D,且∠A=60°,求此時菱形的邊長;

(2)若點P為AB上一點,把菱形ABCD沿過點P的直線a折疊,使點D落在BC邊上,利用無刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說明作法和理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于任意三點A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.

(1)已知A(2,3),B(5,0),C(, 2).

①當(dāng)時,點A,B,C的最優(yōu)覆蓋矩形的面積為 ;

②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;

(2)已知點D(1,1),點E(, ),其中點E是函數(shù)的圖像上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)﹣4﹣28﹣(﹣29)+(﹣24)
(2)﹣14﹣(1﹣0.5)+3×(1﹣7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Pm,n)到x軸的距離是(  )

A. mB. nC. |m|D. |n|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項式4x212x+k是一個完全平方式,則k的值為_____

查看答案和解析>>

同步練習(xí)冊答案