下列條件,不能使兩三角形全等的是


  1. A.
    兩邊一角對(duì)應(yīng)相等
  2. B.
    兩角及其一角的對(duì)邊對(duì)應(yīng)相等
  3. C.
    三邊對(duì)應(yīng)相等
  4. D.
    兩邊及夾角對(duì)應(yīng)相等
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

11、請(qǐng)閱讀下列材料:
已知:如圖(1)在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E分別為線段BC上兩動(dòng)點(diǎn),若∠DAE=45°.探究線段BD、DE、EC三條線段之間的數(shù)量關(guān)系.小明的思路是:把△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABE′,連接E′D,使問(wèn)題得到解決.請(qǐng)你參考小明的思路探究并解決下列問(wèn)題:
(1)猜想BD、DE、EC三條線段之間存在的數(shù)量關(guān)系式,直接寫(xiě)出你的猜想;
(2)當(dāng)動(dòng)點(diǎn)E在線段BC上,動(dòng)點(diǎn)D運(yùn)動(dòng)在線段CB延長(zhǎng)線上時(shí),如圖(2),其它條件不變,(1)中探究的結(jié)論是否發(fā)生改變?請(qǐng)說(shuō)明你的猜想并給予證明;
(3)已知:如圖(3),等邊三角形ABC中,點(diǎn)D、E在邊AB上,且∠DCE=30°,請(qǐng)你找出一個(gè)條件,使線段DE、AD、EB能構(gòu)成一個(gè)等腰三角形,并求出此時(shí)等腰三角形頂角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式12×231=132×21
13×341=143×31
23×352=253×32
34×473=374×43
62×286=682×26

以上每個(gè)等式中兩邊數(shù)字是分別對(duì)稱的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同的規(guī)律,我們稱這類等式為“數(shù)字對(duì)稱等式”.
(1)根據(jù)上述各式反應(yīng)的規(guī)律填空,使式子稱為“數(shù)字對(duì)稱等式”.
①52×
275
275
=
572
572
×25
63
63
×396=693×
36
36

(2)設(shè)這類等式左邊兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,且2≤a+b≤9則等式右邊的兩位數(shù)可表示為
10b+a
10b+a
,等式右邊的三位數(shù)可表示為
100a+10(a+b)+b
100a+10(a+b)+b
;
(3)在(2)的條件下,若a-b=5,等式左右兩邊的兩個(gè)三位數(shù)的差;
(4)等式左邊的兩位數(shù)與三位數(shù)的積能否為2012?若能,請(qǐng)求出左邊的兩位數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

觀察下列等式12×231=132×21
13×341=143×31
23×352=253×32
34×473=374×43
62×286=682×26

以上每個(gè)等式中兩邊數(shù)字是分別對(duì)稱的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同的規(guī)律,我們稱這類等式為“數(shù)字對(duì)稱等式”.
(1)根據(jù)上述各式反應(yīng)的規(guī)律填空,使式子稱為“數(shù)字對(duì)稱等式”.
①52×________=________×25
②________×396=693×________
(2)設(shè)這類等式左邊兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,且2≤a+b≤9則等式右邊的兩位數(shù)可表示為_(kāi)_______,等式右邊的三位數(shù)可表示為_(kāi)_______;
(3)在(2)的條件下,若a-b=5,等式左右兩邊的兩個(gè)三位數(shù)的差;
(4)等式左邊的兩位數(shù)與三位數(shù)的積能否為2012?若能,請(qǐng)求出左邊的兩位數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

觀察下列等式12×231=132×21
13×341=143×31
23×352=253×32
34×473=374×43
62×286=682×26

以上每個(gè)等式中兩邊數(shù)字是分別對(duì)稱的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同的規(guī)律,我們稱這類等式為“數(shù)字對(duì)稱等式”.
(1)根據(jù)上述各式反應(yīng)的規(guī)律填空,使式子稱為“數(shù)字對(duì)稱等式”.
①52×______=______×25
②______×396=693×______
(2)設(shè)這類等式左邊兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,且2≤a+b≤9則等式右邊的兩位數(shù)可表示為_(kāi)_____,等式右邊的三位數(shù)可表示為_(kāi)_____;
(3)在(2)的條件下,若a-b=5,等式左右兩邊的兩個(gè)三位數(shù)的差;
(4)等式左邊的兩位數(shù)與三位數(shù)的積能否為2012?若能,請(qǐng)求出左邊的兩位數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考復(fù)習(xí)針對(duì)性訓(xùn)練 幾何探究題(解析版) 題型:解答題

請(qǐng)閱讀下列材料:
已知:如圖(1)在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E分別為線段BC上兩動(dòng)點(diǎn),若∠DAE=45°.探究線段BD、DE、EC三條線段之間的數(shù)量關(guān)系.小明的思路是:把△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABE′,連接E′D,使問(wèn)題得到解決.請(qǐng)你參考小明的思路探究并解決下列問(wèn)題:
(1)猜想BD、DE、EC三條線段之間存在的數(shù)量關(guān)系式,直接寫(xiě)出你的猜想;
(2)當(dāng)動(dòng)點(diǎn)E在線段BC上,動(dòng)點(diǎn)D運(yùn)動(dòng)在線段CB延長(zhǎng)線上時(shí),如圖(2),其它條件不變,(1)中探究的結(jié)論是否發(fā)生改變?請(qǐng)說(shuō)明你的猜想并給予證明;
(3)已知:如圖(3),等邊三角形ABC中,點(diǎn)D、E在邊AB上,且∠DCE=30°,請(qǐng)你找出一個(gè)條件,使線段DE、AD、EB能構(gòu)成一個(gè)等腰三角形,并求出此時(shí)等腰三角形頂角的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案