闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀
如圖,在直角梯形ABCD中,AB∥CD,∠A=90°,∠B=45°,AB=4,BC=3,F(xiàn)是DC上一點,且CF=,E,是線段AB上一動點,將射線EF繞點E順時針旋轉(zhuǎn)45°交BC邊于點G.
(1)直接寫出線段AD和CD的長;
(2)設(shè)AE=x,當x為何值時△BEG是等腰三角形;
(3)當△BEG是等腰三角形時,將△BEG沿EG折疊,得到△B′EG,求△B′EG與五邊形AEGCD重疊部分的面積.
【答案】分析:(1)過點C作CK⊥AB于K,易證四邊形AKCD是矩形,根據(jù)等腰直角三角形的性質(zhì)和45°角的正弦值計算即可;
(2)當△BEG為等腰三角形時,有三種情況,分別是當GE=GB時、當BE=BG時、當EG=EB時要分別討論求出符合題意的x值即可;
(3)由(2)可知三種情況的x值,再有重疊=S梯形EBCF-S△BEG和S重疊=S△BEG分別計算求出△B’EG與五邊形AEGCD重疊部分的面積為或1或
解答:解:(1)過點C作CK⊥AB于K,(如圖1)
∵AB∥CD,∠A=90°,
∴四邊形AKCD是矩形,
∴DC=AK,AD=CK,
∵∠B=45°,BC=3,
∴CK=BK,
∴sinB==,
∴CK=BK=,
∴AD=,
∵CD=AK=AB-BK=4-
∴CD=;
(2)當△BEG為等腰三角形時,有三種情況,
①當GE=GB時,∠GEB=∠B=45°,
∵∠FEG=45°,
∴∠FEB=∠FEG+∠BEG=45°+45°=90°,
∴∠AEF=90°,
∵∠A=∠D=90°,
易證四邊形AEFD為矩形,
∴AE=DF=CD-CF=-=,
②當BE=BG時,連接AF,
∵AD=DF=
∴∠DAF=∠DAF=45°,
∴∠FAE=90°-45°=45°,
∵∠B=45°,
∴∠B=∠FAE,
∵∠FEG=45°,
∴∠AEF+∠BEG=135°,
又∵∠BEG+∠BGE=135°,
∴∠AEF=∠BGE,
∴△AEF∽△BGE,

當BE=BG時,則AE=AF=3,
③當EG=EB時,
∴∠EGB=∠B=45°,
∴∠GEB=90°,
∵∠FEG=45°,
∴∠FEB=90°+45°=135°,
∴∠FEB+∠B=180°,
∴FE∥BC,
∵CF∥BE,
∴四邊形CBEF是平行四邊形,
∴BE=CF=
∴AE=AB-BE=4-=3,
綜上:當x=或3或3時,△BEG為等腰三角形;
(3)①當GE=GB時(如圖2),
S重疊=S梯形EBCF-S△BEG
=,
②當BE=BG時(如圖3),
S重疊=S△BEG
過點G,作GH⊥AB,垂足為H,
由(2)知:BG=BE=4-3,
易求得GH=BG=(4-3)=4-,
∴S重疊=,
③當EG=EB時,②當EF=AE時,如圖(4),此時△B′EG與五邊形AEGCD重疊部分面積為△B′EG面積.
∠FEG=∠GEB=45°,EF∥BC,又CF∥BE,
∴四邊形EBCF是平行四邊形,
∴BE=CE=,
∴S重疊=×(2=1,
綜上所述,△B’EG與五邊形AEGCD重疊部分的面積為或1或
點評:本題考查了直角梯形的性質(zhì)、矩形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)以及相似三角形的判定和性質(zhì),題目的綜合性極強,對學生解題的能力要求很高,解題的關(guān)鍵是對特殊幾何圖形的性質(zhì)和判定要熟爛于心和對分類討論數(shù)學思想的靈活運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�