【題目】如圖,放置在水平桌面上的臺燈燈臂AB長為42cm,燈罩BC長為32cm,底座厚度為2cm,燈臂與底座構(gòu)成的∠BAD60°.使用發(fā)現(xiàn),光線最佳時燈罩BC與水平線所成的角為30°,此時燈罩頂端C到桌面的高度CE是多少cm?

【答案】此時燈罩頂端C到桌面的高度CE是(2118cm

【解析】

過點(diǎn)BBMCE于點(diǎn)MBFDA于點(diǎn)F.在RtBCMRtABF中,通過解直角三角形可求出CM、BF的長,再由CE=CM+BF+ED即可求出CE的長.

過點(diǎn)BBMCE于點(diǎn)M,BFDA于點(diǎn)F,如圖所示.

RtBCM中,∵BC=32cm,∠CBM=30°,∴CM=BCsinCBM=16cm

RtABF中,AB=42cm,∠BAD=60°,∴BF=ABsinBAD=21cm

∵∠ADC=BMD=BFD=90°,∴四邊形BFDM為矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+212=2118cm).

答:此時燈罩頂端C到桌面的高度CE是(2118cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+x1x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為D.將拋物線位于直線lyt(t)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個“M”形的新圖象.

(1)點(diǎn)A,B,D的坐標(biāo)分別為      ,   

(2)如圖,拋物線翻折后,點(diǎn)D落在點(diǎn)E處.當(dāng)點(diǎn)E在△ABC內(nèi)(含邊界)時,求t的取值范圍;

(3)如圖,當(dāng)t0時,若Q是“M”形新圖象上一動點(diǎn),是否存在以CQ為直徑的圓與x軸相切于點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=3,BC=4,若AC,BC邊上的中線BE,AD垂直相交于點(diǎn)O,則AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖像如圖所示,下列結(jié)論正確是( )

A. B. C. D. 有兩個不相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸交于AB兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè)

當(dāng)時,拋物線與y軸交于點(diǎn)C

直接寫出點(diǎn)AB、C的坐標(biāo);

如圖1,連接AC,在x軸上方的拋物線上有一點(diǎn)D,若,求點(diǎn)D的坐標(biāo);

如圖2,點(diǎn)P為拋物線位于第一象限圖象上一動點(diǎn),過P,求PQ的最大值;

如圖3,若點(diǎn)M為拋物線位于x軸上方圖象上一動點(diǎn),過點(diǎn)M軸,垂足為N,直線MN上有一點(diǎn)H,滿足互余,試判斷HN的長是否變化,若變化,請說明理由,若不變,請求出HN長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)上,且,的平分線于點(diǎn),點(diǎn)的中點(diǎn),連結(jié).若四邊形DCFE和△BDE的面積都為3,則△ABC的面積為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)P是對角線AC上一動點(diǎn)(不與A、C 重合),連接PB,過點(diǎn)PPEPB,交射線DC于點(diǎn)E,已知AD=3sinBAC=.設(shè)AP的長為x.

(1)AB等于多少;當(dāng)x=1時,等于多少;

(2)①試探究: 否是定值?若是,請求出這個值;若不是,請說明理由;

②連接BE,設(shè)△PBE的面積為S,求S的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點(diǎn)O,DE平分∠ADCAB于點(diǎn)E,BCD=60°,AD=AB,連接OE.下列結(jié)論:①SABCD=ADBD;DB平分∠CDE;AO=DE;SADE=5SOFE,其中正確的個數(shù)有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的袋子中裝有4個相同的小球,它們除顏色外無其它差別,把它們分別標(biāo)號:1、2、3、4

(1)隨機(jī)摸出一個小球后,放回并搖勻,再隨機(jī)摸出一個,用列表或畫樹狀圖的方法求出“兩次取的球標(biāo)號相同”的概率

(2)隨機(jī)摸出兩個小球,直接寫出“兩次取出的球標(biāo)號和等于4”的概率.

查看答案和解析>>

同步練習(xí)冊答案