在一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

1.第一小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫出求解過(guò)程.

2.第二小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖4.已知AH=AI,AC長(zhǎng)為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個(gè)新三角形,已知這個(gè)新三角形面積小于15,請(qǐng)你幫助該小組求出a可能的最大整數(shù)值.

3.探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關(guān)系.

 

【答案】

 

1.連接BB',由題意得EF垂直平分BC,故BB'=B'C,由翻折可得,

B'C=BC,∴△BB'C為等邊三角形.∴∠B'CB=60°,

(或由三角函數(shù)FC:B'C=1:2求出∠B'CB=60°也可以.)

∴∠B'CG=30°,∴∠B'GC=60°………………………………………3分

2.分別取CE、EG、GI的中點(diǎn)P、Q、R,連接DP、FQ、HR、AD、AF、AH,∵△ABC中,BA=BC,根據(jù)平移變換的性質(zhì),△CDE、△EFG和△GHI都是等腰三角形,∴DP⊥CE,F(xiàn)Q⊥EG,HR⊥GI.

在Rt△AHR中,AH=AI=4a,AH2=HR2+AR2,HR2=a2,

則DP2=FQ2=HR2=a2,

AD2=AP2+DP2=6a2,AF2=AQ2+FQ2=10a2,

新三角形三邊長(zhǎng)為4a、a、a.

∵AH2=AD2+AF2    ∴新三角形為直角三角形.

其面積為aa=a2.∵a2<15  ∴a2<15

(或通過(guò)轉(zhuǎn)換得新三角形三邊就是AD、DI、AI,即求△GAI的面積或利用△HAI與△HGI相似,求△HAI的面積也可以)

∴a的最大整數(shù)值為3.………………………………………………7分

3.將△BOC'沿BB'方向平移2個(gè)單位,所移成的三角形記為△B'PR,

將△COA'沿A'A方向平移2個(gè)單位,所移成的三角形記為△AQR.

由于OQ=OA+AQ=OA+OA'=AA'=2,OP=OB'+B'P=OB'+OB=BB'=2.又∠QOP=60°,則PQ=OQ=OP=2,

又因?yàn)镼R+PR=OC+OC',故O、R、P三點(diǎn)共線.因?yàn)镾△QOP=,

所以S△AOB'+S△BOC'+S△COA'=S△AOB'+S△B'PR+S△PQA< …………10分

【解析】所謂的難題就是一些知識(shí)點(diǎn)的綜合,此題包括了圖形的平移、等腰三角形的性質(zhì)、三角形面積等知識(shí),有一定的難度。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)學(xué)生去測(cè)一條南北流向的河寬,如圖所示,某學(xué)生在河?xùn)|岸點(diǎn)A處觀測(cè)到河對(duì)岸水邊有一點(diǎn)C,測(cè)得C在A北偏西31°的方向上,沿河岸向北前行20米到達(dá)B處,測(cè)得C在B北偏西45°的方向上,請(qǐng)你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計(jì)算出這條河的寬度.(參考數(shù)值:tan31°≈
3
5
,sin31°≈
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)同學(xué)們?nèi)y(cè)量一座古塔CD的高度.他們首先從A處安置測(cè)傾器,測(cè)得塔頂C的仰角∠CFE=21°,然后往塔的方向前進(jìn)50米到達(dá)B處,此精英家教網(wǎng)時(shí)測(cè)得仰角∠CGE=37°,已知測(cè)傾器高1.5米,請(qǐng)你根據(jù)以上數(shù)據(jù)計(jì)算出古塔CD的高度.
(參考數(shù)據(jù):sin37°≈
3
5
,tan37°≈
3
4
,sin21°≈
9
25
,tan21°≈
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在一次數(shù)學(xué)活動(dòng)課上,張明同學(xué)將矩形ABCD沿直線CE折疊,頂點(diǎn)B恰好落在AD邊上F點(diǎn)處,如圖所示,已知CD=8cm,BE=5cm,則AD=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)學(xué)生去測(cè)長(zhǎng)江的寬度,某學(xué)生在長(zhǎng)江北岸點(diǎn)A處觀測(cè)到長(zhǎng)江對(duì)岸水邊有一點(diǎn)C,測(cè)得C在A東南方向上,沿長(zhǎng)江邊向東前行200米到達(dá)B處,測(cè)得C在B南偏東30°的方向上.
(1)畫出學(xué)生測(cè)量的示意圖;
(2)請(qǐng)你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計(jì)算出長(zhǎng)江的寬度(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一次數(shù)學(xué)活動(dòng)課上,王老師給學(xué)生發(fā)了一塊長(zhǎng)40cm,寬30cm的長(zhǎng)方形紙片(如圖),要求折成一個(gè)高為5cm的無(wú)蓋的且容積最大的長(zhǎng)方體盒子.
(1)該如何裁剪呢?請(qǐng)畫出示意圖,并標(biāo)出尺寸;
(2)求該盒子的容積.

查看答案和解析>>

同步練習(xí)冊(cè)答案