【題目】如圖,ABAD,ACAE,BCDE,點(diǎn)EBC上.

1)求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB

【答案】1)見解析;(2)見解析.

【解析】

1)用“SSS”證明即可;

2)借助全等三角形的性質(zhì)及角的和差求出∠DAB=∠EAC,再利用三角形內(nèi)角和定理求出∠DEB=∠DAB,即可說明∠EAC=∠DEB

解:(1)∵ABAD,ACAE,BCDE

∴△ABC≌△ADESSS);

2)由ABC≌△ADE,

則∠D=∠B,∠DAE=∠BAC

∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC

設(shè)ABDE交于點(diǎn)O,∵∠DOABOE,∠D=∠B,

∴∠DEB=∠DAB

∴∠EAC=∠DEB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC、BD交于點(diǎn)OBE平分∠ABCAC于點(diǎn)F,交AD于點(diǎn)E,且∠DBF=15°,求證:(1AO=AE; (2)FEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點(diǎn),過點(diǎn)ABC的平行線交BE的延長線于點(diǎn)F,連接CF.

(1) 求證:AF=DC;

(2) ACAB,試判斷四邊形ADCF的形狀,并說明理由;

(3) 當(dāng)△ABC滿足什么條件時(shí),四邊形ADCF是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小學(xué)門口有一直線馬路,交警在門口設(shè)有一條寬度為4米的斑馬線,為安全起見,規(guī)定車頭距斑馬線后端的水平距離不得低于2米,現(xiàn)有一旅游車在路口遇紅燈剎車停下,汽車?yán)锼緳C(jī)與斑馬線前后兩端的視角分別為∠FAE=15°和∠FAD=30°,司機(jī)距車頭的水平距離為0.8米,試問該旅游車停車是否符合上述安全標(biāo)準(zhǔn)?(E,D,C,B四點(diǎn)在平行于斑馬線的同一直線上)(參考數(shù)據(jù):tan15°=2-,≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠C=90°,D是BC邊上一點(diǎn),AC=6,CD=3,∠ADC=α.

(1)試寫出α的正弦、余弦、正切這三個(gè)函數(shù)值;

(2)若∠B與∠ADC互余,求BD及AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,∠A40°.點(diǎn)P是射線AB上一動(dòng)點(diǎn)(與點(diǎn)A不重合),CE、CF分別平分∠ACP和∠DCP交射線AB于點(diǎn)E、F

(1)求∠ECF的度數(shù);

(2)隨著點(diǎn)P的運(yùn)動(dòng),∠APC與∠AFC之間的數(shù)量關(guān)系是否改變?若不改變,請求出此數(shù)量關(guān)系;若改變,請說明理由;

(3)當(dāng)∠AEC=∠ACF時(shí),求∠APC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠B=∠D=90°,AB=BC=15千米,CD=3千米.求四邊形ABCD的周長和面積(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.41,≈1.73,≈2.45).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD 與正方形關(guān)于某點(diǎn)中心對稱.已知A,,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).

(1)求對稱中心的坐標(biāo):

(2)寫出頂點(diǎn)B,C,的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要35萬元,購買2臺電腦和1臺電子白板需要25萬元

1求每臺電腦、每臺電子白板各多少萬元?

2根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低

查看答案和解析>>

同步練習(xí)冊答案