【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,下列結論:①abc>0;②b=2a;③a+b+c<0;④a-b+c>0.其中正確的個數(shù)是( 。

A. 4個 B. 3個 C. 2個 D. 1個

【答案】B

【解析】

由拋物線的開口方向判斷a0的關系,由拋物線與y軸的交點判斷c0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.

∵拋物線的開口方向向下,

a<0;

∵拋物線與y軸的交點在y軸的正半軸上,

c>0;

∵對稱軸為x==-1<0,

又∵a<0,

b<0,

abc>0,

x==-1,

b=2a

由圖象可知:當x=1y=0,

a+b+c=0;

x=-1y>0,

a-b+c>0,

∴①、、④正確.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,一次函數(shù)的圖像分別與軸交于兩點,正比例函數(shù)的圖像交于點

1)求的值及的解析式;

2)求的值;

3)在坐標軸上找一點,使以為腰的為等腰三角形,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個三角形的所有頂點都在網(wǎng)格的格點上,那么這個三角形叫做格點三角形,請在下列給定網(wǎng)格中按要求解答下面問題:

1)直接寫出圖1方格圖(每個小方格邊長均為1)中格點ABC的面積;

2)已知A1B1C1三邊長分別為、、,在圖2方格圖(每個小方格邊長均為1)中畫出格點A1B1C1

3)已知A2B2C2三邊長分別為、、 (m>0,n>0,且mn)在圖3所示4n×3m網(wǎng)格中畫出格點A2B2C2,并求其面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x軸的負半軸、y軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉,使點B落在y軸上,得到矩形ODEF,BC與OD相交于點M.若經(jīng)過點M的反比例函數(shù)y=(x0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tanDOE=,,則BN的長為______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB為O的直徑,AC是O的弦,AD垂直于過點C的直線DC,垂足為點D,且AC平分∠BAD.

(1)求證:CD是O的切線;

(2)若AD=1,AB=5,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以等邊ABC的邊AC為腰作等腰CAD,使AC=AD,連接BD,若∠DBC=41°,∠CAD=________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某科技開發(fā)公司研制出一種新型產品,每件產品的成本為2400元,銷售單價定為3000元.在該產品的試銷期間,為了促銷,鼓勵商家購買該新型產品,公司決定商家一次購買這種新型產品不超過10件時,每件按3000元銷售;若一次購買該種產品超過10件時,每多購買一件,所購買的全部產品的銷售單價均降低10元,但銷售單價均不低于2600元.

(1)商家一次購買這種產品多少件時,銷售單價恰好為2600元?

(2)設商家一次購買這種產品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關系式,并寫出自變量x的取值范圍.

(3)該公司的銷售人員發(fā)現(xiàn):當商家一次購買產品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤最大,公司應將最低銷售單價調整為多少元(其它銷售條件不變)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁4名同學進行一次羽毛球單打比賽,要從中選2名同學打第一場比賽,求下列事件的概率。

(1)已確定甲打第一場,再從其余3名同學中隨機選取1名,恰好選中乙同學;

(2)隨機選取2名同學,其中有乙同學.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車銷售公司經(jīng)銷某品牌款汽車,隨著汽車的普及,其價格也在不斷下降.今年5月份款汽車的售價比去年同期每輛降價1萬元,如果賣出相同數(shù)量的款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.

1)今年5月份款汽車每輛售價多少萬元?

2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的款汽車,已知款汽車每輛進價為7.5萬元,款汽車每輛進價為6萬元,公司預計用不多于105萬元且不少于102萬元的資金購進這兩款汽車共15輛,有幾種進貨方案?

3)按照(2)中兩種汽車進價不變,如果款汽車每輛售價為8萬元,為打開款汽車的銷路,公司決定每售出一輛款汽車,返還顧客現(xiàn)金萬元,要使(2)中所有的方案獲利相同,值應是多少?

查看答案和解析>>

同步練習冊答案