【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:
筆試 | 面試 | 體能 | |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計(jì)入總分.根據(jù)規(guī)定,請(qǐng)你說(shuō)明誰(shuí)將被錄用.
【答案】
(1)解: 甲=(83+79+90)÷3=84,
乙=(85+80+75)÷3=80,
丙=(80+90+73)÷3=81.
從高到低確定三名應(yīng)聘者的排名順序?yàn)椋杭,丙,?/span>
(2)解:∵該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,
∴甲淘汰;
乙成績(jī)=85×60%+80×30%+75×10%=82.5,
丙成績(jī)=80×60%+90×30%+73×10%=82.3,
乙將被錄取
【解析】(1)代入求平均數(shù)公式即可求出三人的平均成績(jī),比較得出結(jié)果;(2)由于甲的面試成績(jī)低于80分,根據(jù)公司規(guī)定甲被淘汰;再將乙與丙的總成績(jī)按比例求出測(cè)試成績(jī),比較得出結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組開展動(dòng)手操作活動(dòng),設(shè)計(jì)了如圖所示的三種圖形,現(xiàn)計(jì)劃用鐵絲按照?qǐng)D形制作相應(yīng)的造型,則所用鐵絲的長(zhǎng)度關(guān)系是( )
A.甲種方案所用鐵絲最長(zhǎng)
B.乙種方案所用鐵絲最長(zhǎng)
C.丙種方案所用鐵絲最長(zhǎng)
D.三種方案所用鐵絲一樣長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖正方形ABCD的邊長(zhǎng)為4,E、F分別為DC、BC中點(diǎn).
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A和動(dòng)點(diǎn)P在直線l上,點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為Q,以AQ為邊作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圓O.點(diǎn)C在點(diǎn)P右側(cè),PC=4,過(guò)點(diǎn)C作直線m⊥l,過(guò)點(diǎn)O作OD⊥m于點(diǎn)D,交AB右側(cè)的圓弧于點(diǎn)E.在射線CD上取點(diǎn)F,使DF= CD,以DE,DF為鄰邊作矩形DEGF.設(shè)AQ=3x.
(1)用關(guān)于x的代數(shù)式表示BQ,DF.
(2)當(dāng)點(diǎn)P在點(diǎn)A右側(cè)時(shí),若矩形DEGF的面積等于90,求AP的長(zhǎng).
(3)在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中, ①當(dāng)AP為何值時(shí),矩形DEGF是正方形?
②作直線BG交⊙O于點(diǎn)N,若BN的弦心距為1,求AP的長(zhǎng)(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,交⊙O于點(diǎn)P,OA=5,AB與⊙O相切于點(diǎn)B,BP的延長(zhǎng)線交直線l于點(diǎn)C.
(1)求證:AB=AC.
(2)若PC=2 ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P(t,0)(t>0)是x軸正半軸上的一點(diǎn),是以原點(diǎn)為圓心,半徑為1的 圓,且A(﹣1,0),B(0,1),點(diǎn)M是 上的一個(gè)動(dòng)點(diǎn),連結(jié)PM,作直角△MPM1 , 并使得∠MPM1=90°,∠PMM1=60°,我們稱點(diǎn)M1為點(diǎn)M的對(duì)應(yīng)點(diǎn).
(1)設(shè)點(diǎn)A和點(diǎn)B的對(duì)應(yīng)點(diǎn)為A1和B1 , 當(dāng)t=1時(shí),求A1的坐標(biāo);B1的坐標(biāo) .
(2)當(dāng)P是x軸正半軸上的任意一點(diǎn)時(shí),點(diǎn)M從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B,求M1的運(yùn)動(dòng)路徑長(zhǎng) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABD中,AB=AD,AO平分∠BAD,過(guò)點(diǎn)D作AB的平行線交AO的延長(zhǎng)線于點(diǎn)C,連接BC.
(1)求證:四邊形ABCD是菱形;
(2)如果OA,OB(OA>OB)的長(zhǎng)(單位:米)是一元二次方程x2﹣7x+12=0的兩根,求AB的長(zhǎng)以及菱形ABCD的面積;
(3)若動(dòng)點(diǎn)M從A出發(fā),沿AC以2m/S的速度勻速直線運(yùn)動(dòng)到點(diǎn)C,動(dòng)點(diǎn)N從B出發(fā),沿BD以1m/S的速度勻速直線運(yùn)動(dòng)到點(diǎn)D,當(dāng)M運(yùn)動(dòng)到C點(diǎn)時(shí)運(yùn)動(dòng)停止.若M、N同時(shí)出發(fā),問(wèn)出發(fā)幾秒鐘后,△MON的面積為 ?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com