【題目】小紅與小剛姐弟倆做擲硬幣游戲,他們兩人同時(shí)各擲一枚壹元硬幣.

若游戲規(guī)則為:當(dāng)兩枚硬幣落地后正面朝上時(shí),小紅贏,否則小剛贏.請用畫樹狀圖或列表的方法,求小剛贏的概率;

小紅認(rèn)為上面的游戲規(guī)則不公平,于是把規(guī)則改為:當(dāng)兩枚硬幣正面都朝上時(shí),小紅得分,否則小剛得分.那么,修改后的游戲規(guī)則公平嗎?請說明理由;若不公平,請你幫他們再修改游戲規(guī)則,使游戲規(guī)則公平(不必說明理由).

【答案】(1)小剛贏的概率為;(2)詳見解析.

【解析】

(1)根據(jù)題意畫樹狀圖,由樹狀圖得所以等可能的結(jié)果和兩枚硬幣落地后不都是正面朝上的情況,再利用概率公式求解即可;

(2)根據(jù)(1)分別計(jì)算出小紅和小剛的得分,然后判斷是否不公平即可.

(1)畫樹狀圖得:

∵共有4種可能,兩枚硬幣落地后不都是正面朝上的有3種,

∴小剛贏的概率為

(2)由(1)可知,每次游戲小紅平均得到的分?jǐn)?shù)為:,

小剛得到的分?jǐn)?shù)為:,修改后游戲也不公平.

應(yīng)該修改為:當(dāng)兩枚硬幣正面都朝上時(shí),小紅得分,否則小剛得分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ACB=90°,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的A,AO=OB=2,則陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的圖象如圖所示,則下列結(jié)論:;②;③;④.其中正確的結(jié)論是(

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,AB10SABC30,∠ABC的平分線BDAC于點(diǎn)D,點(diǎn)M、N分別是BDBC上的動(dòng)點(diǎn),則CM+MN的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,ABAD,把矩形沿對角線AC所在直線折疊,使點(diǎn)B落在點(diǎn)E處,AECDF,連接DE

1)求證:△ADE≌△CED

2)若AD4,AB8,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,ABC各頂點(diǎn)的坐標(biāo)分別為:A40),B﹣14),C﹣3,1

1)在圖中作A′B′C′使A′B′C′ABC關(guān)于x軸對稱;

2)寫出點(diǎn)A′B′C′的坐標(biāo);

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)ab、c為常數(shù)且a≠0)中的xy的部分對應(yīng)值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

給出了結(jié)論:

1)二次函數(shù)有最小值,最小值為﹣3;

2)當(dāng)時(shí),y0;

3)二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).

則其中正確結(jié)論的個(gè)數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長為2,寬為的矩形紙片(),剪去一個(gè)邊長等于矩形寬度的正方形(稱為第一次操作);

1)第一次操作后剩下的矩形長為,寬為 ;

2)再把第一次操作后剩下的矩形剪去一個(gè)邊長等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.

①求第二次操作后剩下的矩形的面積;

②若在第3次操作后,剩下的圖形恰好是正方形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OAPB、ADFE的頂點(diǎn)AD. B在坐標(biāo)軸上,點(diǎn)BAP上,點(diǎn)P、F在函數(shù),已知正方形OAPB的面積是9.

(1)k的值和直線OP的解析式;

(2)求正方形ADFE的邊長

(3)函數(shù)在第三象限的圖像上是否存在一點(diǎn)Q,使得ABQ的面積為10.5?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案