【題目】如圖所示,為測量河岸兩燈塔之間的距離,小明在河對岸處測得燈塔在北偏東方向上,燈塔在東北方向上,小明沿河岸向東行走100米至處,測得此時燈塔在北偏西方向上,已知河兩岸

1)求觀測點(diǎn)到燈塔的距離;

2)求燈塔,之間的距離.

【答案】1(米);(2(米)

【解析】

1)過點(diǎn)CCMADM,過點(diǎn)AANBCN,由題意易知,在△CDM中,∠MCD=30°,得出DM=CD=50米,CM=50米,Rt△ACM中,由∠CAM=45°,得出AM=CM=50米,從而得到AC的長;

2)在Rt△ACN中,∠ACN=45°-15°=30°,得出AN=AC=25米,在Rt△ABN中,∠ABC=BCD=45°,由等腰直角三角形的性質(zhì)即可得出答案.

解:(1)過點(diǎn),過點(diǎn)

由題意可知,,

中,

(米),米,

中,

米,(米),

即觀測點(diǎn)到燈塔的距離為(米)

2)在中,,

(米),

中,,

(米)

(米)

即燈塔,之間的距離為(米)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是邊長為6的等邊ABC的外接圓,點(diǎn)D,E分別是BCAC上兩點(diǎn),且BDCE,連接AD,BE相交于點(diǎn)P,延長線段BE交⊙O于點(diǎn)F,連接CF

1)求證:ADFC;

2)連接PC,當(dāng)PEC為直角三角形時,求tanACF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為直徑,點(diǎn)D為弧ACB的中點(diǎn),過點(diǎn)D的切線與BC的延長線交于點(diǎn)E

1)用尺規(guī)作圖作出圓心O;(保留作圖痕跡,不寫作法);

2)求證:DEBC;

3)若OC=2CE=4,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暴雨過后,某地遭遇山體滑坡,武警總隊派出一隊武警戰(zhàn)士前往搶險. 半小時后,第二隊前去支援,平均速度是第一隊的1.5倍,結(jié)果兩隊同時到達(dá).已知搶險隊的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊所行路線相同,問兩隊的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=8°,點(diǎn)POB上.以點(diǎn)P為圓心,OP為半徑畫弧,交OA于點(diǎn)P1(點(diǎn)P1與點(diǎn)O不重合),連接PP1;再以點(diǎn)P1為圓心,OP為半徑畫弧,交OB于點(diǎn)P2(點(diǎn)P2與點(diǎn)P不重合),連接P1P2;再以點(diǎn)P2為圓心,OP為半徑畫弧,交OA于點(diǎn)P3(點(diǎn)P3與點(diǎn)P1不重合),連接P2P3;…按照這樣的方法一直畫下去,得到點(diǎn)Pn,若之后就不能再畫出符合要求的點(diǎn)Pn+1,則n等于( )

A.13B.12C.11D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側(cè),其圖象與x軸交于點(diǎn)A(﹣1,0)與點(diǎn)C(x2,0),且與y軸交于點(diǎn)B(0,﹣2),小強(qiáng)得到以下結(jié)論:0a2;﹣1b0;c=﹣1;當(dāng)|a|=|b|時x2﹣1;以上結(jié)論中正確結(jié)論的序號為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組做“用頻率估計概率”的實(shí)驗(yàn)時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下的表格,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是(

實(shí)驗(yàn)次數(shù)

100

200

300

500

800

1000

2000

頻率

0365

0328

0330

0334

0336

0332

0333

A一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

B在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”

C拋一個質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是5

D拋一枚硬幣,出現(xiàn)反面的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM12. 現(xiàn)以O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.

1直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);

2求這條拋物線的解析式;

3若要搭建一個矩形支撐架”AD- DC- CB,使CD點(diǎn)在拋物線上,A、B點(diǎn)在地面OM上,則這個支撐架總長的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形EFGH的頂點(diǎn)在邊長為2的正方形的邊上.若設(shè)AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系為

查看答案和解析>>

同步練習(xí)冊答案