【題目】閱讀探索:任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?(完成下列空格)

(1)當已知矩形A的邊長分別為61時,小亮同學是這樣研究的:

設所求矩形的兩邊分別是xy,由題意得方程組:,消去y化簡得:2x2﹣7x+6=0,

∵△=49﹣48>0,

x1=_____,x2=_______,

∴滿足要求的矩形B存在.

(2)如果已知矩形A的邊長分別為21,請你仿照小亮的方法研究是否存在滿足要求的矩形B.

(3)如果矩形A的邊長為mn,請你研究滿足什么條件時,矩形B存在?

【答案】12,;(2)不存在,理由見解析;(3)(m+n2-8mn≥0,理由見解析.

【解析】

試題(1)直接利用求根公式計算即可;

2)參照(1)中的解法解題即可;

3)解法同上,利用根的判別式列不等關(guān)系可求mn滿足的條件.

試題解析:(1)由上可知(x-2)(2x-3=0,

∴x1=2,x2=.

2)不存在,理由如下:

設所求矩形的兩邊分別是xy,由題意,得

消去y化簡,得2x2-3x+2=0.

∵△=9-160,不存在矩形B.

3)(m+n2-8mn≥0,理由如下

設所求矩形的兩邊分別是xy,由題意,得

消去y化簡,得2x2-m+nx+mn=0.

△=m+n2-8mn≥0,即(m+n2-8mn≥0時,滿足要求的矩形B存在.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如圖的方式放置。點A1,A2,A3,……和點C1,C2,C3……分別在直線y=x +1x軸上,則點A6的坐標是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB、連接DO并延長交CB的延長線于點E.

(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;

(2)若BE=4,DE=8,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,DOAB于點O,連接DA交⊙O于點C,過點C作⊙O的切線交DO于點E,連接BCDO于點F.

(1)求證:CE=EF;

(2)連接AF并延長,交⊙O于點G.填空:

①當∠D的度數(shù)為   時,四邊形ECFG為菱形;

②當∠D的度數(shù)為   時,四邊形ECOG為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AOBC于點O,OEAB于點E,以點O為圓心,OE為半徑作半圓,交AO于點F

(1)求證:ACO的切線;

(2)若點FOA的中點,OE=3,求圖中陰影部分的面積;

(3)在(2)的條件下,點PBC邊上的動點,當PE+PF取最小值時,直接寫出BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DEEA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O,連接AF、CE.

(1)求證:△AOE≌△COF;

(2)求證:四邊形AFCE為菱形;

(3)求菱形AFCE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(﹣1,0)及點B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞點C順時針旋轉(zhuǎn)90°得到EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

同步練習冊答案