【題目】志遠(yuǎn)要在報(bào)紙上刊登廣告,一塊10cm×5cm的長方形版面要付廣告費(fèi)180元,他要把該版面的邊長都擴(kuò)大為原來的3倍,在每平方厘米版面廣告費(fèi)相同的情況下,他該付廣告費(fèi)(
A.540元
B.1080元
C.1620元
D.1800元

【答案】C
【解析】解:∵一塊10cm×5cm的長方形版面要付廣告費(fèi)180元, ∴每平方厘米的廣告費(fèi)為:180÷50= 元,
∴把該版面的邊長都擴(kuò)大為原來的3倍后的廣告費(fèi)為:30×15× =1620元
故選(C)
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的應(yīng)用,掌握測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D在邊AB上,線段DC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),端點(diǎn)C恰巧落在邊AC上的點(diǎn)E處.如果 =m, =n.那么m與n滿足的關(guān)系式是:m=(用含n的代數(shù)式表示m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAC=60°,AC與BC交于點(diǎn)O,E為CD延長線上的一點(diǎn),且CD=DE,連接BE分別交AC、AD于點(diǎn)F、G,連接OG,則下列結(jié)論中一定成立的是 . (把所有正確結(jié)論的序號(hào)都填在橫線上) ①OG= AB;
②與△EGD全等的三角形共有5個(gè);
③S四邊形CDGF>SABF;
④由點(diǎn)A、B、D、E構(gòu)成的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn)相同,開口大小相同,但開口方向相反,則稱這兩個(gè)二次函數(shù)為“對稱二次函數(shù)”.
(1)請寫出二次函數(shù)y=2(x﹣2)2+1的“對稱二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2與y1互為“對稱二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)﹣3≤x≤3時(shí),y2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘漁船位于港口A的北偏東60°方向,距離港口20海里B處,它沿北偏西37°方向航行至C處突然出現(xiàn)故障,在C處等待救援,B,C之間的距離為10海里,救援船從港口A出發(fā)20分鐘到達(dá)C處,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8, ≈1.732,結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將八個(gè)邊長為1的小正方形擺放在平面直角坐標(biāo)系中,若過原點(diǎn)的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個(gè)單位后所得直線l′的函數(shù)關(guān)系式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下的一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形,如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準(zhǔn)菱形.

(1)猜想與計(jì)算:
鄰邊長分別為3和5的平行四邊形是階準(zhǔn)菱形;已知ABCD的鄰邊長分別為a,b(a>b),滿足a=8b+r,b=5r,請寫出ABCD是階準(zhǔn)菱形.
(2)操作與推理:
小明為了剪去一個(gè)菱形,進(jìn)行了如下操作:如圖2,把ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F處,得到四邊形ABFE.請證明四邊形ABFE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星期天,小明和小芳從同一小區(qū)門口同時(shí)出發(fā),沿同一路線去離該小區(qū)1800米的少年宮參加活動(dòng),為響應(yīng)“節(jié)能環(huán)保,綠色出行”的號(hào)召,兩人都步行,已知小明的速度是小芳的速度的1.2倍,結(jié)果小明比小芳早6分鐘到達(dá),求小芳的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A開始,沿AB邊以1cm/s的速度向點(diǎn)B運(yùn)動(dòng):點(diǎn)Q從點(diǎn)B開始,沿BC邊以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),運(yùn)動(dòng)停止,如果P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā).
(1)幾秒后△PBQ的面積等于8cm2?
(2)幾秒后以P,B,Q為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

同步練習(xí)冊答案