【題目】如圖,在正方形中,點、為邊上的動點(不含端點),.下列三個結(jié)論:①當時,則;②;③的周長不變,其中正確結(jié)論的個數(shù)是(

A.0B.1

C.2D.3

【答案】D

【解析】

根據(jù)題目條件判定△AND≌△AMB,從而判斷①的正誤;利用截長補短的方法判定三角形全等,從而判斷②③正誤.

解:在正方形ABCD中,AD=AB=CD=CB,∠D=∠B=∠C=90°

∴∠NMC=45°,△MNC是等腰直角三角形

∴NC=MC

∴DN=BM

所以△AND≌△AMB

,因此①正確;

如圖:延長CD,使得DE=BM

在△ADE和△ABM中

∴△ADE≌△ABM

,AM=AE

又∵AE=AM,AN=AN

∴△AEN≌△AMN

∴MN=EN=ED+DN=BM+DN

∠AMN=∠E,∠ANM=∠ANE

∴∠ENM=∠ANM+∠ANE=2(180°-45°-∠AMN)=270°-2∠AMN

而∠MNC=180°-∠ENM=180°-(270°-2∠AMN)=2∠AMN-90°

即②,正確;

的周長=MN+MC+NC=EN+NC+MC=ED+DN+NC+MC=BM+DN+NC+MC=CD+BC,即正方形邊長的2倍,∴③的周長不變,正確

正確的共三個,故選:D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx22x+c的頂點A在直線lyxa上,點D3,0)為拋物線上一點.

1)求a的值;

2)拋物線與y軸交于點B,試判斷△ABD的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,點P是半徑OB上一動點(不與O,B重合),過點P作射線lAB,分別交弦BCD、E兩點,在射線l上取點F,使FCFD

1)求證:FC是⊙O的切線;

2)當點E的中點時,

若∠BAC60°,判斷以O,BE,C為頂點的四邊形是什么特殊四邊形,并說明理由;

,且AB20,求OP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形和菱形的邊長分別為46,,則陰影部分的面積是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知,,點從點開始沿邊向點的速度移動;點從點開始沿邊向點的速度移動.如果、同時出發(fā),用表示移動的時間,

(1)用含的代數(shù)式表示:線段_____________;_______.

(2)相似時,求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形,點是其內(nèi)部一點.

1)如圖1,點在邊的垂直平分線上,將繞點逆時針旋轉(zhuǎn),得到,當點落在上時,恰好點落在直線上,求的度數(shù);

2)如圖2,點在對角線上,連接,若將線段繞點逆時針旋轉(zhuǎn)后得到線段,試問點是否在直線上,請給出結(jié)論,并說明理由;

3)如圖3,若,設(shè),,請寫出、、這三條線段長之間滿足的數(shù)量關(guān)系是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀念品的出廠價為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分數(shù)據(jù)如表:

天數(shù)(x)

1

3

6

10

每件成本p(元)

7.5

8.5

10

12

任務(wù)完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=

設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.

(1)直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:

(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?

(3)任務(wù)完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個不相等的實數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

查看答案和解析>>

同步練習冊答案