如圖,在平面直角坐標系中,直角三角形AOB的頂點A、B分別落在坐標軸上.O為原點,點A的坐標為(6,0),點B的坐標為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒個單位的速度運動.當一個動點到達終點時,另一個動點也隨之停止運動,設動點M、N運動的時間為t秒(t>0).
(1)當t=3秒時.直接寫出點N的坐標,并求出經過O、A、N三點的拋物線的解析式;
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當t為何值時,△MNA是一個等腰三角形?

【答案】分析:(1)根據(jù)A、B的坐標,可得到OA=6、OB=8、AB=10;當t=3時,AN=6,即N是AB的中點,由此得到點N的坐標.然后利用待定系數(shù)法求出拋物線的解析式.
(2)△MNA中,過N作MA邊上的高NC,先由∠BAO的正弦值求出NC的表達式,而AM=OA-OM,由三角形的面積公式可得到關于S△MNA、t的函數(shù)關系式,利用所得函數(shù)的性質即可求出△MNA的最大面積.
(3)首先求出N點的坐標,然后表示出AM、MN、AN三邊的長;由于△MNA的腰和底不確定,若該三角形是等腰三角形,可分三種情況討論:①MN=NA、②MN=MA、③NA=MA;直接根據(jù)等量關系列方程求解即可.
解答:解:(1)由題意,A(6,0)、B(0,8),則OA=6,OB=8,AB=10;
當t=3時,AN=t=5=AB,即N是線段AB的中點;
∴N(3,4).
設拋物線的解析式為:y=ax(x-6),則:
4=3a(3-6),a=-;
∴拋物線的解析式:y=-x(x-6)=-x2+x.

(2)過點N作NC⊥OA于C;
由題意,AN=t,AM=OA-OM=6-t,NC=NA•sin∠BAO=t•=t;
則:S△MNA=AM•NC=×(6-t)×t=-(t-3)2+6.
∴△MNA的面積有最大值,且最大值為6.

(3)∵Rt△NCA中,AN=t,NC=AN•sin∠BAO=t,AC=AN•cos∠BAO=t;
∴OC=OA-AC=6-t,∴N(6-t,t).
∴NM==;
又:AM=6-t,AN=t(0<t≤6);
①當MN=AN時,=t,即:t2-8t+12=0,t1=2,t2=6(舍去);
②當MN=MA時,=6-t,即:t2-12t=0,t1=0(舍去),t2=;
③當AM=AN時,6-t=t,即t=
綜上,當t的值取 2或 時,△MAN是等腰三角形.
點評:該動點函數(shù)綜合題涉及了二次函數(shù)的性質、圖形面積的求法、等腰三角形的判定等知識.應注意的是,當?shù)妊切蔚难偷撞幻鞔_時,要分情況進行討論,以免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案