【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個頂點(diǎn)分別在四條直線上,則正方形ABCD的面積為

A. B. 5C. 3D.

【答案】B

【解析】

D點(diǎn)作直線EF與平行線垂直,與l1交于點(diǎn)E,與l4交于點(diǎn)F.易證ADE≌△DFC,得CF=1,DF=2.根據(jù)勾股定理可求CD2得正方形的面積.

EFl2,交l1E點(diǎn),交l4F點(diǎn).

l1l2l3l4,EFl2,

EFl1EFl4,

即∠AED=DFC=90°

ABCD為正方形,

∴∠ADC=90°

∴∠ADE+CDF=90°

又∵∠ADE+DAE=90°,

∴∠CDF=DAE

ADEDCF

∴△ADE≌△DCFAAS),

CF=DE=1

DF=2,

CD2=12+22=5,

即正方形ABCD的面積為5

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.

(1)要使這兩個正方形的面積之和等于17cm2,那么這段鐵絲剪成兩段后的長度分別是多少?

(2)兩個正方形的面積之和可能等于12cm2? 若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,∠BAC120°,ABAC2,點(diǎn)DBC邊上(不與BC重合),在AC上取一點(diǎn)E,使∠ADE30°

1)求證:ABD∽△DCE

2)若BDn0n2),求線段AE的長;(用含n的代數(shù)式表示)

3)當(dāng)ADE是等腰三角形時,請直接寫出AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是上半圓的弦,過點(diǎn)C作⊙O的切線DE交AB的延長線于點(diǎn)E,過點(diǎn)A作切線DE的垂線,垂足為D,且與⊙O交于點(diǎn)F,設(shè)∠DAC,∠CEA的度數(shù)分別是α,β.

(1)用含α的代數(shù)式表示β,并直接寫出α的取值范圍;

(2)連接OF與AC交于點(diǎn)O′,當(dāng)點(diǎn)O′是AC的中點(diǎn)時,求α,β的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:小科遇到這樣一個問題:如圖1,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)部一點(diǎn),且PA3,PB4,PC5,求∠APB的度數(shù).

小科是這樣思考的:如圖2,將AP繞著點(diǎn)A逆時針旋轉(zhuǎn)60°得到AP,連接PCPP,可以根據(jù)邊角邊證明△APB≌△APC,進(jìn)而通過判定得到兩個特殊的三角形,解決問題.

1)小科遇到的問題中,∠APB的度數(shù)是 ;(請直接寫出答案)

參考小科同學(xué)的思路,解決下列問題:

2)如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA2,PB2,PD2

①求∠APB的度數(shù);②求正方形的邊長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程ax2+bx10a≠0)有一根為x2019,則一元二次方程ax12+bx1)=1必有一根為( 。

A.B.2020C.2019D.2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°BC=5,C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個單位長的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(t0.過點(diǎn)DDFBC于點(diǎn)F,連接DE、EF.

1)求證:AE=DF;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

3)當(dāng)t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段ADAB的比等于(  )

A. 25:24 B. 16:15 C. 5:4 D. 4:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD是△ABC的中線,AEBC,射線BEAD于點(diǎn)F,交⊙O于點(diǎn)G,點(diǎn)FBE的中點(diǎn),連接CE.

(1)求證:四邊形ADCE為平行四邊形;

(2)若BC=2AB,求證:

查看答案和解析>>

同步練習(xí)冊答案