觀察式子
1
1×3
=
1
2
(1-
1
3
)
1
3×5
=
1
3
(
1
3
-
1
5
)
,
1
5×7
=
1
2
(
1
5
-
1
7
)
,…由此可知
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)×(2n+1)
=
n
2n+1
n
2n+1
分析:由于
1
1×3
=
1
2
(1-
1
3
)
1
3×5
=
1
3
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)
,則原式=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+…+
1
2
1
2n-1
-
1
2n+1
),再提
1
2
后合即可.
解答:解:原式=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+…+
1
2
1
2n-1
-
1
2n+1

=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1

=
1
2
×
2n
2n+1

=
n
2n+1

故答案為
n
2n+1
點評:本題考查了有理數(shù)的混合運算:先算乘方,再算乘除,然后進行加減運算;有括號先算括號.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

觀察式子:
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
),
1
5×7
=
1
2
1
5
-
1
7
),….由此計算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2009×2011
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列式子
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
…根據(jù)上述規(guī)律計算:
a
1×2
+
a
2×3
+
a
3×4
+…+
a
2010×2011
,并求出當a=2011時,上式的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

觀察式子
1
1×3
=
1
2
(1-
1
3
)
,
1
3×5
=
1
3
(
1
3
-
1
5
)
,
1
5×7
=
1
2
(
1
5
-
1
7
)
,…由此可知
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)×(2n+1)
=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

觀察下列式子
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
…根據(jù)上述規(guī)律計算:
a
1×2
+
a
2×3
+
a
3×4
+…+
a
2010×2011
,并求出當a=2011時,上式的值.

查看答案和解析>>

同步練習冊答案