已知,等腰Rt△ABC中,點(diǎn)O是斜邊的中點(diǎn),△MPN是直角三角形,固定△ABC,滑動(dòng)△MPN,在滑動(dòng)過程中始終保持點(diǎn)P在AC上,且PE⊥AB,PF⊥BC,垂足分別為E、F.
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),OE、OF的數(shù)量和位置關(guān)系分別是
 

(2)當(dāng)△MPN移動(dòng)到圖2的位置時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.
(3)如圖3,等腰Rt△ABC的腰長為6,點(diǎn)P在AC的延長線上時(shí),Rt△MPN的邊PM與AB的延長線交于點(diǎn)E,直線BC與直線NP交于點(diǎn)F,OE交BC于點(diǎn)H,且 EH:HO=2:5,則BE的長是多少?
精英家教網(wǎng)
分析:(1)根據(jù)題意及圖示即可得出OE、OF的數(shù)量關(guān)系:相等,位置關(guān)系:垂直;
(2)根據(jù)題意及圖示可證明△OEB≌△OFC,故成立;
(3)根據(jù)題意及圖示,還有所給比例關(guān)系即可得出答案.
解答:精英家教網(wǎng)解:(1)數(shù)量關(guān)系:相等,位置關(guān)系:垂直
故答案為相等且垂直.

(2)成立,理由如下:
∵△MPN是直角三角形,
∴∠MPN=90°.
連接OB,
∴∠OBE=∠C=45°,
∵△ABC,△MPN是直角三角形,PE⊥AB,PF⊥BC,
∴∠ABC=∠MPN=∠BEP=∠BFP=90°,
∴四邊形EBFP是矩形,
∴BE=PF
∵PF=CF,
∴BE=CF,
∵OB=OC=
1
2
AC,
∴在△OEB和△OFC中,
BE=CF
∠OBE=∠OCF
OB=OC

∴△OEB≌△OFC(SAS),故成立,

(3)如圖,找BC的中點(diǎn)G,連接OG,
∵O是AC中點(diǎn),
∴OG∥AB,OG=
1
2
AB,
∵AB=6,
∴OG=3,
∵OG∥AB,
∴△BHE∽△GOH,
∵EH:HO=2:5,
∴BE:OG=2:5,
而OG=
1
2
AB=3,
∴BE=
6
5
點(diǎn)評(píng):本題主要考查了等腰直角三角形的性質(zhì),全等三角形的證明,比例關(guān)系等,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:等腰Rt△ABC中,∠A=90°,
(1)如圖1,E為AB上任意一點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,則有AD∥BC;
(2)若將等腰Rt△ABC改為正△ABC,如圖2所示,E為AB邊上任一點(diǎn),△CDE為正三角形,連接AD,上述結(jié)論還成立嗎?答
 
;
(3)若△ABC為任意等腰三角形,AB=AC,如圖3,E為AB上任一點(diǎn),△DEC∽△ABC,連接AD,請(qǐng)問AD與BC的位置關(guān)系怎樣?精英家教網(wǎng)答:
 

請(qǐng)你在上述3個(gè)結(jié)論中,任選一個(gè)結(jié)論進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)已知,等腰Rt△ABC中,點(diǎn)O是斜邊的中點(diǎn),△MPN是直角三角形,固定△ABC,滑動(dòng)△MPN,在滑動(dòng)過程中始終保持點(diǎn)P在AC上,且 PM⊥AB,PN⊥BC,垂足分別為E、F.

(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),OE、OF的數(shù)量和位置關(guān)系分別是____      __.

(2)當(dāng)△MPN移動(dòng)到圖2的位置時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.

(3)如圖3,等腰Rt△ABC的腰長為6,點(diǎn)P在AC的延長線上時(shí),Rt△MPN的邊PM    

與AB的延長線交于點(diǎn)E,直線BC與直線NP交于點(diǎn)F,OE交BC于點(diǎn)H,且 EH:  HO=2:5,則BE的長是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)已知,等腰Rt△ABC中,點(diǎn)O是斜邊的中點(diǎn),△MPN是直角三角形,固定△ABC,滑動(dòng)△MPN,在滑動(dòng)過程中始終保持點(diǎn)P在AC上,且PM⊥AB,PN⊥BC,垂足分別為E、F.

(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),OE、OF的數(shù)量和位置關(guān)系分別是____     __.
(2)當(dāng)△MPN移動(dòng)到圖2的位置時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.
(3)如圖3,等腰Rt△ABC的腰長為6,點(diǎn)P在AC的延長線上時(shí),Rt△MPN的邊 PM    
與AB的延長線交于點(diǎn)E,直線BC與直線NP交于點(diǎn)F,OE交BC于點(diǎn)H,且 EH:  HO=2:5,則BE的長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省廊坊市畢業(yè)生統(tǒng)練一數(shù)學(xué) 題型:解答題

(本小題滿分10分)已知,等腰Rt△ABC中,點(diǎn)O是斜邊的中點(diǎn),△MPN是直角三角形,固定△ABC,滑動(dòng)△MPN,在滑動(dòng)過程中始終保持點(diǎn)P在AC上,且 PM⊥AB,PN⊥BC,垂足分別為E、F.

(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),OE、OF的數(shù)量和位置關(guān)系分別是____      __.

(2)當(dāng)△MPN移動(dòng)到圖2的位置時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.

(3)如圖3,等腰Rt△ABC的腰長為6,點(diǎn)P在AC的延長線上時(shí),Rt△MPN的邊 PM    

與AB的延長線交于點(diǎn)E,直線BC與直線NP交于點(diǎn)F,OE交BC于點(diǎn)H,且 EH:  HO=2:5,則BE的長是多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案